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Abstract

This paper describes a novel approach to construct a mapping
function between a given speaker pair using probability density
functions (PDF) of matrix variate. In voice conversion studies,
two important functions should be realized: 1) precise model-
ing of both the source and target feature spaces, and 2) con-
struction of a proper transform function between these spaces.
Voice conversion based on Gaussian mixture model (GMM) is
the de facto standard because of their flexibility and easiness in
handling. In GMM-based approaches, a joint vector space of
the source and target is first constructed, and the joint PDF of
the two vectors is modeled as GMM in the joint vector space.
The joint vector approach mainly focuses on precise modeling
of the ‘joint’ feature space, and does not always construct a
proper transform between two feature spaces. In contrast, the
proposed method constructs the joint PDF as GMM in a matrix
variate space whose row and column respectively correspond to
the two functions, and it has potential to precisely model both
the characteristics of the feature spaces and the relation between
the source and target spaces.

Index Terms: voice conversion, Gaussian mixture model, ma-
trix variate distribution, matrix variate normal, matrix variate
Gaussian mixture model

1. Introduction

Voice conversion (VC), or speaker conversion is a technique
to transform an input utterance of a speaker to another utter-
ance that sounds like another speaker with its linguistic content
preserved [1]. Besides speech synthesis, VC techniques can
be applied to various applications such as feature enhancement
in ASR [2, 3]. Among several statistical approaches to con-
struct the conversion model, approaches using Gaussian mix-
ture model (GMM) are widely used because of their flexibility
and easiness in handling [2, 4].

GMM-based techniques for statistical mapping use a mix-
ture of Gaussians to model the probabilistic density function
(PDF) of source feature vectors [2] or those of joint vectors
of the source and the target vectors [4]. Both approaches de-
rive a transformation function as a weighted sum of linear
transformations from the constructed PDF. Each linear trans-
formation corresponds to each Gaussian component, while the
weights are calculated as posterior probabilities of source vec-
tors. Since these approaches utilize Gaussian modeling as prob-
abilistic densities, training algorithms for their models can be
easily derived. In addition, several adaptation techniques based
on maximum likelihood linear regression (MLLR) or maximum
a posterior (MAP) adaptation [5, 6], and a target speaker model
as prior knowledge [7] can be flexibly introduced.
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In statistical voice conversion, two important functions
should be achieved: to model the source and target feature
spaces precisely, and to construct a proper transformation be-
tween these spaces. In the joint vector approach in GMM-based
voice conversion [4], a joint vector space of the source and tar-
get is first constructed, and the joint PDF of the two vectors
is modeled in a single vector space for the joint vector. That
is to say, realization of the two functions in VC is implicitly
founded on the concatenation of the source and target vectors.
Once the source and the target feature vectors are concatenated,
characteristics of the source space and those of the target space
are not explicitly modeled in the training phase of the joint PDF.
The approach can be regarded as precise modeling on the ‘joint’
feature space. However, since the dimensionality of the vector
space is doubled, the approach easily suffers from overtraining
effects when the complexity of the model is not properly con-
figured. Although constraints such as assumption of diagonality
in cross covariance matrices mitigate the problems, they are not
always suitable for modeling of voice conversion. To realize
the two functions in VC, multiple factors in the joint modeling
should be explicitly modeled, particularly correlation in a fea-
ture space and relation between the source and target spaces.

In arbitrary speaker conversion, introduction of matrix rep-
resentation has succeeded in dealing with multiple factors of
acoustic variations. We have recently proposed a new repre-
sentation of speaker space based on tensor analysis for arbi-
trary speaker conversion [8]. In our previous approach, an arbi-
trary speaker is not represented as a supervector, but as a matrix
whose row and column dimensions respectively correspond to
the component of GMM and the dimension of the mean vector.
Inspired by this approach, the current paper introduces matrix
representation to joint modeling of the joint PDF. The proposed
method constructs the joint PDF as GMM in a matrix variate
space whose row and column dimensions respectively corre-
spond to the feature dimensionality and the speaker indices.
The proposed approach has potential to precisely model both
the characteristics of the two feature spaces and the relation be-
tween them.

2. Joint modeling of GMM for VC

In this section, the joint density GMM method is briefly de-
scribed [4]. Let x [€1,22,...,Tn,] be a D-dimensional
vector sequence characterizing an utterance from the source
speaker, and y = [yl,yz,...,ynu] be that of the target
speaker. Note that the two utterances contain the same lin-
guistic content. The dynamic time warping algorithm (DTW)
is applied to align the source vectors to their corresponding
vectors in the target sequence. Then, a new sequence of 2D-
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dimensional joint vectors z = [z1,22,...,2,] where z; =
[z ,y,]" is created. The notation ' denotes transposition of
the vector, and ¢ denotes a new time index after DTW is applied.
The joint probability density of the source and the target vectors
is modeled by a GMM for the joint vector z; as follows:

>

m=1

P(ziA) = > wnN (205, 2. (1)

In Equation 1, NV (z¢; p?), E%)) denotes the normal distribu-
tion with mean vector ugz) and covariance matrix Eiﬁ), m is
the mixture component index, and the total number of mixture
components is M. The weight of the m-th component is wy,
and 27]\:{:1 wm = 1. A(¥) denotes a parameter set of the GMM,
which consists of weights, mean vectors, and covariance matri-
ces for individual mixture components. Since the feature space
of the joint vector z includes the feature spaces for the source

and the target speakers as its subspaces, uﬁrf) and 25,? are writ-

ten as
(2) — /_l,fq? 2(2) — EgZ) E’S:y) )
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where /,Lﬁjf ) and uﬁ}{ ) are the mean vector of the m-th compo-
nent for the source and that for the target, respectively. Simi-
larly, @) and YY) are the covariance matrices of the m-th
component for the source and that for the target, respectively.
The matrices 25,?” and 25,7{1) are the cross-covariance matri-
ces of the m-th component for the source and the target. To
mitigate the overfitting problems, the variance-covariance struc-
tures are sometimes constrained. For example, the covariance
and cross-covariance matrices are restricted to diagonal matri-
ces [9]. These parameters in the GMM are estimated by the EM
algorithm using the sequence of the joint vectors (z).

A mapping function F(-) to convert the source vector x¢
to the target vector y, is derived based on the conditional prob-
ability density of y,, given x;. This probability density can
be represented by the parameters of the joint density model as
follows:

M
P(y e, X)) =" P(m|z:, A7) P(y,|@e, m, AP),
m=1
3)
where
P(m\:z:h)\(z)) ]\;UmN(mz:’l’7rL 7(x)m ():wc) . @
Em:l anN(wt;HnL 7Em )
Py e, m, A7) = N(y,; B, DY), 6)

BY, = pl+230800 @ — i), 6)
DY = mHY-_mEHREHniy. (1)

By minimizing the mean square error, the mapping function F
is derived as

M
Flz) =Y P(mlz, A\P)EY

m,t*

®

m=1

When maximum likelihood estimation is adopted for parameter
generation instead [9], the covariance matrix of the conditional
probability density in Equation 7 is also taken into account and
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the target parameters are generated by the following updating
equations:

M /M

¥, <Z ﬂm,tD53“> (Z ﬂm,tD%’“ESi?t),
m=1 m=1

ﬁm,t (9)

Compared with Equation 8, in parameter generation by Equa-
tion 9, the inverse covariance matrices of each Gaussian compo-
nent are contained, and they play a role of a kind of confidence
measures for the conditional mean vectors in Equation 6.

P(mlze, y,, A7).

3. Matrix variate GMM for VC
3.1. Matrix variate normal distribution

In this section, statistical modeling based on matrix variate is
introduced to voice conversion. First, we introduce some fun-
damentals of matrix variate probability density functions [10].
Let X be a random matrix, whose row and column sizes are n
and p respectively. In addition, let M, U, V beann X p,nxn,
p X p matrices, respectively, with U and V' are positive definite.
X has a matrix normal distribution with parameters M, U, and
V, if X has a moment generating function as follows:

Mx(T) = exp {tr (MTT) + %tr (TTUTV)} . (10)

where T is an n X p matrix. The following notation

X ~ N (X; M, U, V) (11)

is used hereafter. A property of the matrix variate normal distri-
bution corresponding to that of vector variate normal distribu-
tion, i.e. our familiar Gaussian distribution, is derived from the
vec operator and the Kronecker product. Equation 11 is equiva-
lent to the following probability density for the vector vec(X);

12

where vec() is the vec-operator that stacks the columns of a
matrix into a vector, and A denotes a parameter set. Finally, the
probability density function for matrix X is written as

P(vec(X)|A) = N(vec(X);vec(M),V @ U).

P(X|A\) =c¢ 'exp —%tr {UT(X -M)V (X - M)}

where ¢ = (2) /2P |U (VPP v |42

13)

When matrix samples X = [X1, X2,..., X 7] are observed
as generated results of Equation 13, maximum likelihood esti-
mator for M, U, and V are derived as follows:

. 1 &
M = T;Xu (14)
A 1 T N A1 ~
U=-7 DX =M)V (X, -M), (5)
t=1
T
~ 1 AT —1 ~
V=) (Xi-M)'U (X:—M). (16)
n t=1

According to Equation 12, matrix variate normal distribution
is not identical to Gaussian distribution with free covariance
structure, but it supplies the PDF with a regular structure based
on the Kronecker product. This ‘separatable’ structure for



the variance-covariance matrix can give the explicitly different
characteristics to rows and columns. Namely, U and V' capture
variance-covariance structures in row and column directions, re-
spectively. In addition, from Equations 15 and 16, an advantage
for parameter estimation is revealed. Although the number of
matrix samples is 7" in the above case, the effective numbers
of samples to estimate U and V' are p1" and nT, respectively.
That is to say, proper introduction of matrix variate modeling is
expected to realize more efficient and precise inference.

3.2. Matrix variate GMM

In a similar manner of expanding the single Gaussian to GMM,
a mixture model of matrix variate normal distribution can be
derived [11]. This paper calls the model as matrix variate Gaus-
sian mixture model (MV-GMM). Here, the joint density model-
ing based on MV-GMM for VC is described. Similarly to Sec-
tion 2, let & = [x1,X2,...,&n, ] and Yy = (Y, Ys,---, Y, ]
Y
be the feature vectors of the source and target speakers, respec-
tively. In the proposed method, after DTW alignment between
the source and target sequences, a new sequence is constructed
as a sequence of joint matrices Z = [Z1,Z>, ..., Zy] wWhere
Z: = |x¢,y,] € RP*S. The notation S denotes the num-
ber of speakers and S = 2 in the above case. Note that the
proposed approach can be easily expanded into model training
using multiple speakers unlike the joint vector approach. The
joint density is modeled by an MV-GMM for the joint matrix
Z; as follows:

M
P(ZAP) =" wnNaw (Z4; My, U, V). (17)

m=1

From Equation 17, the joint density model is represented as
weighted sum of the matrix variate normal distribution of each
component. In general, the notations in Equation 17 are the
same as those in Equation 1 except for U ,,, and V ,,,. The ma-
trix U,, € RP*P is the covariance matrix of the m-th compo-
nent representing variance-covariance structures of the feature
space. The matrix V,,, € R5*5 is the covariance matrix repre-
senting the correlation between the source and the target speak-
ers. The EM algorithm is used to estimate these parameters, and
the update equations have a similar form to Equations 14-16 as
follows:

memv(Zt§ M, U, Vm)

mt = ; (18)
Tt Zﬁ.{:lwm-/\/‘mv(zt;Mm7Um7Vm)
. 1 Z
M,, = T*Z'Ym,tzta (]9)
=1

T

. 1 " o1 \/ T

Um = ﬁt:zlrym,t(zt - Mm)v’m (Zt - Mm) ’(20)
1 & 1

N ~ Ty~ Y

Vim = DiTm;’ym,z(Zt =~ Mn) U, (Ze — Mum)(21)

where T, = Z;‘le Ym,+ means the effective number of sam-
ples corresponding to the m-th component. Like maximum
likelihood estimation for the single matrix normal distribution,
the efficient inference can be realized in Equations 20 and 21.
In a similar way, the mapping function is also derived based
on the conditional probability of y,, given x;. Since MV-GMM
has an explicitly separatable variance-covariance structure, the
conditional probability density of the m-th component is simply
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represented as follows:

P(yJee,m X)) = N(y,; B, DY), 22)
(yz)

Vry e

BY, = p+ (@ —pl)), @3
Um
(yz), (zy)
(v) _ (yy) _ Um "Um

DY = <Um o ) Unm, 24)
where M ,,, = [ )] and v denotes the corresponding

element in V,,,. Equations 23 and 24 mean that the conver-
sion function corresponding to the m-th component is derived
from parameters in the covariance matrix V ,,, corresponding to
correlation of speakers. Compared with Equations 6 and 7, pa-
rameter generation based on MV-GMM is realized at low com-
putational costs since it does not require calculating inverse ma-
trices.

3.3. Model training using multiple speakers

Since the proposed modeling based on MV-GMM separates
variance-covariance structures in the joint feature space explic-
itly, the joint feature space is easily expanded. Adding the fea-
ture column vectors from additional speakers to the joint ma-
trix, the proposed method realizes model training using three or
more speakers. In the conventional approach where the mul-
tiple feature vectors are concatenated into a high dimensional
feature vector, model training using multiple speakers easily
suffers from the overtraining problem. In contrast, the pro-
posed method could utilize the additional column vectors for
performance improvement, because a kind of adaptive training
is realized in the training phase of MV-GMM (See Equation 20)
[12,13].

4. Experimental evaluation
4.1. Experimental conditions

To evaluate the performance of our proposed method and the
effects of model training using multiple speakers, two kinds of
voice conversion experiments were carried out. There are two
objectives of the experiments. The first objective is to verify that
the proposed approach based on MV-GMM effectively models
both the characteristics of the feature spaces and the relation
between the source and target spaces compared with the con-
ventional joint modeling. The second objective is to verify the
effectiveness of model training when the additional column vec-
tors is added.

For the first objective, we used speech data of two male
speakers from the CMU ARCTIC database [14] (bdl and rms).
Voice conversion was performed using bdl as the source speaker
and rms as the target one. We selected 256 sentences (from
a0001 to a0256) for training. The evaluation set consisting of
50 sentences (from a0544 to a0593) were selected.

For the second objective, we used speech samples from
three male speakers (MHT as the source speaker, MMY as the
target speaker and MSH as the additional speaker) in the ATR
Japanese speech database B-set [15]. For training, the first 250
sentences from the database were selected. The last 53 sen-
tences were selected for test data. In this experiment, the DTW
was first carried out between a feature sequence from MHT and
that from MMY. Then, a sequence of averaged feature vectors
of them was calculated based on the alignment information. Fi-
nally the DTW between the sequence of the averaged feature



50l —— Fulljoint_ 1
: —>»— Cross-joint
o —x— MV-GMM
KX
c
o
£ 49 |
]
@
©
[
2 48t 1
Q
?
]
=
a7 | ]

64 128 512
Number of mixtures

16 32 256

Figure 1: Results of objective evaluations by mel-cepstral dis-
tortion (MCD).

vectors and a feature sequence from MSH was carried out to
construct the joint matrix in the proposed method.

We used 24-dimensional mel-cepstrum vectors for spec-
trum representation (D =24) in both the above setups. These
were derived by STRAIGHT analysis [16]. Conditional max-
imum likelihood criterion is used for parameter generation
(Equation 9). Note that parameter generation considering dy-
namic features is not adopted in the experiment [9].

In the first experiment using CMU ARCTIC database,
we evaluated three methods; the joint vector approach where
variance-covariance structure is not restricted (Full-joint), the
joint vector approach where the covariance matrices 2 and
WY the cross covariance matrices £ and ¢ are diag-
onal (Cross-joint), and the proposed method (MV-GMM). U ,,,
and V' ,, are the full covariance matrices. The number of mix-
ture components (M) was varied from 16 to 512.

In the second experiment using the ATR Japanese speech
database, we evaluated two methods based MV-GMM; one
trained by the joint matrices from the source and target speakers
(S = 2) and that trained by the joint matrices from the source,
target and additional speakers (S = 3). The number of mixture
components (M) was fixed to 256.

4.2. Objective evaluations

We evaluated the conversion performance using mel-cepstral
distortion between the converted vectors and the vectors of the
targets. Figure 1 shows the result of average mel-cepstral distor-
tion for the test data as a function of the number of mixture com-
ponents in GMMs. When the number of mixture components
is small, the performance of the joint vector approach without
restriction of variance-covariance structures is better than the
performances of the other methods. However when the num-
ber of mixture components is bigger than 64, the performance
of “Full-joint” is drastically degraded. This means that no re-
striction for variance-covariance structures in the joint model-
ing suffers from the overfitting effects when the model is com-
plex. Compared with the joint vector approach with diagonal
constraints, the proposed method based on MV-GMM shows
the similar trends as a function of the number of mixture com-
ponents. When the number of mixtures is bigger than 32, the
proposed method outperforms the “Cross-joint” approach. This
means that the proposed method models the detailed character-
istics of the feature spaces both using the source and target fea-
tures effectively in Equation 20. Compared with the “Full-joint”
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Table 1: Results of objective evaluations by MCD in the opti-
mal conditions. The optimal numbers of mixture components
were selected. # of parameters means the number of variance-
covariance parameters which should be estimated in the model.

MCD [dB] M  # of parameters
Full-joint 4.70 64 75264
Cross-joint 4.72 256 18432
MV-GMM 4.68 512 155136

Table 2: Results of objective evaluations by MCD when model
training using multiple speaker is applied.

MCD [dB]
4.643
4.635

approach, the performance of the proposed method is slightly
better in the optimal condition of the model complexity. This
means that constraints derived from matrix variate modeling ef-
fectively work for the modeling of the two functions in voice
conversion; to model the source and target feature spaces pre-
cisely, and to construct a proper transformation between these
spaces.

Table 1 shows the results of objective evaluations in the op-
timal conditions. From Table 1, the proposed method has the
most parameters for variance-covariance structure which should
be estimated. Nevertheless, the proposed method effectively
works and does not suffer from the overfitting effects. This
means that the algorithm for parameter estimation in MV-GMM
realizes efficient and precise inference.

4.3. Effects of model training using multiple speakers

Table 2 shows the results of objective evaluations when the
number of training speakers for the joint model in MV-GMM
is varied. When the additional speaker is included in the train-
ing phase of the proposed model, the performance of conversion
is slightly improved. Note that the additional vectors are neither
from the source nor target speakers. That is to say, the proposed
framework effectively utilizes the additional column vectors for
the improvement of the performance. The proposed method can
be regarded as a kind of adaptive training which realizes an ef-
ficient parameter tying.

5. Conclusions

This paper proposed a novel approach to construct a map-
ping function between a given speaker pair using matrix variate
Gaussian mixture model. The proposed method can effectively
model both the characteristics of the feature spaces and the re-
lation between the source and target spaces. In addition, the
proposed framework has possibility to use the additional data
from non-target speakers for improvement of the conversion
performance. For further works, the effectiveness of the pro-
posed method should be investigated in large-scale subjective
evaluations. In addition, the proposed modeling with dynamic
features, or long-span features is interesting. Integration with
other parameter tying approaches focusing on precise modeling
of variance-covariance structure is another further direction.
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