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Abstract 

English is the only language available for global communica-
tion. Due to the influence of speakers’ mother tongue, howev-
er, those from different regions often have different accents in 
their pronunciation of English. The ultimate goal of our pro-
ject is automatic creation of a global pronunciation map of 
World Englishes on an individual basis, for speakers to use to 
locate similar English pronunciations. Creating the map math-
ematically requires a matrix of pronunciation distances among 
all the speakers considered. Our previous study proposed a 
good algorithm for that purpose [1], where, using phonetic 
reference pronunciation distances calculated from labeled data, 
a pronunciation distance predictor was trained and built for 
unlabeled data. Due to space limit in [1], the procedure for 
calculating the reference distances was not described in detail. 
Then in this paper, detailed descriptions are given and 498 
world-wide native and non-native speakers in the Speech Ac-
cent Archive [2] are clustered using the phonetic reference dis-
tances. Results show high validity of using the calculated dis-
tances as reference distances for training a distance predictor. 
Index Terms: World Englishes, IPA transcription, DTW, 
Speech Accent Archive, phonetic pronunciation clustering 

1. Introduction

English is the only language available for global communica-
tion and it is true that English communication is done quite 
often between non-native speakers in international occasions. 
Due to the influence of the speakers’ mother tongue, those 
from different regions inevitably have different accents in their 
pronunciation. Recently, more and more users of English ac-
cept the concept of World Englishes [3,4,5,6] and they regard 
US and UK pronunciations as just two major examples of ac-
cented English. Diversity of World Englishes is found in vari-
ous aspects of speech acts such as dialogue, syntax, pragmatics, 
lexical choice, pronunciation etc. Among these kinds of diver-
sity, this paper focuses on pronunciation. If one takes the phi-
losophy of World Englishes as it is, he can claim that every 
kind of accented English is equally correct and incorrect. In 
this situation, there will be a great interest in how one type of 
pronunciation is different from another, not in how that type of 
pronunciation is incorrect compared to US or UK pronuncia-
tion. As shown in [7], the intelligibility of spoken English de-
pends on the nature of the listeners as well as that of the 
speaker and the spoken content, and foreign accented English 
can indeed be more intelligible than native English. Generally 
speaking, speech intelligibility tends to be enhanced among 
speakers of similarly accented pronunciation. 
The ultimate goal of our project is automatic creation of a 
global map of World Englishes on an individual basis, for a 

speaker to use to locate similar Englishes and to find where his 
pronunciation is located in the diversity of English pronuncia-
tions. If the speaker is a learner, he can then find the best and 
easiest-to-communicate English conversation partner. A learn-
er can also know how his pronunciation compares to other va-
rieties. If he is too distant from these other varieties, he may 
have to correct his pronunciation for the first time to achieve 
smoother communication with these others. In real-world ap-
plication, the global but individual pronunciation map may be 
popularized to the world of international business. Here, peo-
ple often encounter new types of accented English pronuncia-
tion, some of which may be very problematic and cause some 
miscommunication. With this map, however, one can know in 
advance how his pronunciation is different from his new busi-
ness partner’s. He may find his colleague whose pronunciation 
is similar to that partner’s and ask the colleague for help. 
For our project, however, we have two major problems. One is 
collecting data and labeling a part of them, and the other is 
creating a good algorithm of automatically drawing the global 
map for a huge amount of unlabeled data. Luckily enough, for 
the first problem, the fourth author has made a good effort in 
systematically collecting World Englishes from more than a 
thousand speakers from all over the world. This corpus is 
called the Speech Accent Archive (SAA) [2], which provides 
speech samples of a common elicitation paragraph with their 
narrow IPA transcriptions. The technical challenge in the sec-
ond problem is that we need an algorithm that can focus exclu-
sively on pronunciation differences between speakers by ig-
noring irrelevant differences such as those in age, gender, vo-
cal tract length, etc. In our previous study [1], by using refer-
ence pronunciation distances calculated based on the IPA tran-
scriptions, we built a pronunciation distance predictor using 
invariant pronunciation structure analysis. The invariant struc-
ture analysis was proposed in [8][9] inspired by Jakobson’s 
structural phonology [10] and it can extract very robust fea-
tures. The structural features were already introduced to vari-
ous tasks such as pronunciation scoring [11], pronunciation 
error detection [12], language learners clustering [13], dialect 
analysis [14], automatic speech recognition [15,16], and 
speech synthesis [17]. In our previous study [1], our pronunci-
ation distance predictor outperformed by far a baseline system 
that was built with a conventional HMM-based phoneme rec-
ognizer. Due to space limit in [1], however, the procedure for 
calculating reference distances was not described in detail. In 
this paper, detailed descriptions are given and 498 world-wide 
speakers in the Speech Accent Archive are clustered using the 
phonetic reference distances. For comparison between two 
IPA transcriptions, we adopt the DTW algorithm and the ob-
tained alignment gives us a phonetic distance between them. 
For DTW, a phone-to-phone distance matrix is required and 
this is obtained through acoustic analysis of an expert phoneti-
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10. Appendix

Table 1: 153 phones used in acoustic analysis 
Vowels and Consonants used in Acoustic Analysis 

1. i 2. ĭ 3. iː 4. i̥ 5. ï 6. ĩ
7. y 8. ɪ̝ 9. ɪ 10. ɪː 11. ɪ̥ 12. ɪ ̃
13. e 14. ë 15. ẽ 16. ɛ 17. ɛ̈ 18. ɛ̃
19. æ̝ 20. æ 21. æː 22. æ̃ 23. a 24. ã
25. ɨ 26. ɨ̥ 27. . ̃ 28. ʉ 29. ʉ̥ 30. ɚ
31. ɜ 32. ɝ 33. ɐ 34. ɐ̃ 35. ʉ̃ 36. ɵ
37. ɵ̃ 38. ə 39. ə̆ 40. ə̥ 41. ə̃ 42. ə̰
43. ɯ 44. ɯ̈ 45. ɯ̃ 46. u 47. ŭ 48. uː
49. ü 50. ũ 51. ũː 52. ʊ 53. ɤ 54. o 
55. ö 56. õ 57. ʌ 58. ʌ̃ 59. ɔ 60. ɔː
61. ɔ̈ 62. ɔ̃ 63. ɑ 64. ɑː 65. ɑ̈ 66. ɑ̃
67. p 68. pʰ 69. p̚ 70. b 71. b̚ 72. b̥
73. ɸ 74. β 75. β̞ 76. β̃ 77. f 78.v
79. v̥ 80. ʋ 81.m 82. m̥ 83. m̞ 84.n
85. n̥ 86. n̪ 87. n̞ 88. ɲ 89. ŋ 90. ɴ
91.t 92. tʰ 93. t̪ 94. t̞ 95. t’ 96. t̚
97. d 98. d̪ 99. d̚ 100. d̥ 101. s 102. s̪ 
103. sʲ 104. z 105. z̥ 106. ɹ 107. ɹ̥ 108. ɹ̝ 
109. r 110. ɾ 111. ɾ̞ 112. l 113. l̥ 114. lˠ 
115. θ 116. ð 117. ɕ 118. ʑ 119. ʑ̥ 120. ʃ 
121. ʒ 122. ç 123. ʝ 124. j 125. k 126. kʰ
127. k̟ 128. k’ 129. k̟ʰ 130. k̚ 131. ɡ 132. ɡ̟ 
133. ɡ̚ 134. ɡ̊ 135. x 136. ɣ 137. ɣ̟ 138. ɰ 
139. ʔ 140. h 141. ɦ 142. w 143. ɥ 144. pɸ
145. tθ 146. dð 147. ts 148. dz 149. tɕ 150. dʑ
151. tʃ 152. dʒ 153. kx
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