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Abstract

This work investigates two related issues in the area of WFST-
based G2P conversion. The first is the impact that the approach
utilized to convert a target word to an equivalent finite-state ma-
chine has on downstream decoding efficiency. The second issue
considered is the impact that the approach utilized to represent
the joint n-gram model via the WFST framework has on the
speed and accuracy of the system. In the latter case two novel
algorithms are proposed, which extend the work from [1] to
enable the use of failure-transitions with joint n-gram models.
All solutions presented in this work are available as part of the
open-source, BSD-licensed Phonetisaurus G2P toolkit [2].
Index Terms: G2P, WFST, model conversion

1. Introduction

Grapheme-to-Phoneme (G2P) modeling is an important topic in
both Automatic Speech Recognition (ASR) and Text-to-Speech
Synthesis (TTS). Joint n-gram models have proven to be a pop-
ular and effective approach to G2P conversion [3,4,5]. This ap-
proach also affords an efficient representation via the Weighted
Finite-State Transducer (WFST) framework, however several
caveats apply. In particular, while both approximate and ex-
act methods have been proposed to represent standard statisti-
cal language models via the WFST framework [1], these exact
algorithms are incompatible with joint n-gram models.

This work investigates two related issues in the area of
WEFST-based G2P conversion. The first is the impact that the
approach utilized to convert a target word to an equivalent finite-
state machine has on downstream decoding efficiency. The sec-
ond issue considered is the impact that the approach utilized to
represent the joint n-gram model via the WFST framework has
on the speed and accuracy of the system. In the latter case two
novel algorithms are proposed, which extend the work from [1]
to enable the use of failure-transitions with joint n-gram models.

All solutions presented in this work are available as part of
the open-source, BSD-licensed Phonetisaurus G2P toolkit [2],
which is itself based on OpenFst [6]. This toolkit has re-
cently been independently evaluated on a variety of large-scale
corpora and languages, and shown to perform very competi-
tively with other state-of-the-art solutions from both industry
and academia [7].

2. WFST-based G2P Conversion

It will be useful to first briefly outline the WFST-based G2P
conversion approach utilized in this work and implemented in
Phonetisaurus [2]. The approach consists of loosely-coupled a
three-step process. First the target pronunciation dictionary is
aligned using an expectation-maximization training procedure
based on [8] and detailed in [9], the result of which is a cor-
pus of aligned, joint sequences. Before and after examples are
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Word Pronunciation
BRANDISHING B R AENDIH SHIHNG
CHAPPLE CHAEPAHL

Table 1: Samples from the CMU pronunciation dictionary.

Aligned Entry
B:B R:R A:AE N:N D:D I:IH S,H:SH I:IH N,G:NG
C,H:CH A:AEPP:PL:L E:e

Table 2: Results of aligning and reformatting the dictionary as a

corpus of joint sequences. Here the ““, ”” indicates a one-to-many
represents a deletion or

@ 2

or man-to-one relationship, while “e
insertion.

depicted in Table 1 and Table 2, respectively. In the second
step, the corpus of joint sequences is used as the input to train a
standard joint n-gram model. The final preparatory step is then
to convert the resulting n-gram model to an equivalent WFST.
This step follows the same basic approach described in [10].

The WEST-based model may then be utilized to produce
pronunciation hypotheses for novel words by first transforming
the target word into an equivalent finite-state machine and com-
posing it with the model. The general decoding procedure is
summarized in Equation 1.

Pronpest = ShortestPath(Projecto(W o M)) (1)

Here “pronpes:” refers to the most likely pronunciation given
the input word, “W” and the model, “M”; “o” refers to
weighted composition; “Projecto(-)” means to project the
output labels. Finally, the “ShortestPath(-)” refers to the
shortest-path algorithm. Details on these and many other
WEFST-based algorithms may be found in [11]. Some form of
beam pruning could also be applied to reduce computation time
for large inputs, at the potential cost of some accuracy.

This basic decoder formulation is utilized in all following
experiments, however the methods used to transform the tar-
get word into an equivalent finite-state machine, as well as the
approach used to represent the G2P model, have a significant
impact on the efficiency and accuracy of the resulting system.
These two issues are discussed in the following sections. In gen-
eral the approach adopted here, and implemented in Phoneti-
saurus [2] may be summarized a synthesis of minor, incremen-
tal improvements to the excellent work from [1,5,8, 10].

3. Word-to-FSM Conversion

There are several valid approaches that may be utilized to con-
vert a target word to an equivalent finite-state machine. This
choice and the approach utilized to represent the G2P model
under the WFST framework are interdependent.
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In the simplest case, the target word may be represented as
a linear chain automaton, w. An example of this is depicted in
Figure 1 for the word SIXTH. In practice the alignment process
may learn more complex one-to-many or many-to-one relation-
ships, implying a machine w’, like that depicted in Figure 4.
Here w’ may be generated explicitly, or constructed via compo-
sition with a machine C, that encodes all valid subsequences.
An example of a possible C' machine is depicted in Figure 2.
The process may be summarized, w’ = Project,(w o C). The
machine w’ is compatible with a model representation scheme
that utilizes standard e-arcs to represent back-off transitions in
the LM.

The second model modification algorithm proposed in this
work, which is described in 4.1, requires that the target word
be transformed into an FST. In this case new transitions must
be added to w’, one for each allowable G-P correspondence.
Again, this may be achieved explicitly, or via composition. A
suitable example machine is depicted in Figures 3, 5.

Figure 1: Example result of converting the word “SIXTH” to
an equivalent linear FSA w.
HH

TH:TH

Figure 2: Single state FST Figure 3: Single state FST
C, suitable for expanding F, mapping G<«>P corre-
clusters. spondences.

).

FST w”,
RmEps(Min(Det(w' o F))).

Figure 5: result of  computing

3.1. Word-to-FSM Experiments

The preceding section described four possible alternative meth-
ods for converting a target word into an equivalent finite-state
machine: two that result in an FSA w’, and two that result in
an FST w"’. Here we present experimental results that illustrate
the run-time profiles and characteristics of these four methods,
using two standard pronunciation dictionaries of varying size.
The first dictionary is based on the NETtalk [12] dataset and
contains 15k training entries and a 5k test set. The second is
based on the CMUd1ict [13] dataset and contains 113k training
entries and a 13k test set. The dictionary profiles are described
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in Table 3.
Dictionary # Symbols ~ Number of words
G P Train Test
NETtalk 15k/5k 26 50 14851 4951
CMUdict 113k/13k 27 39 106837 12000

Table 3: Pronunciation dictionary characteristics overview.

In order to determine which construction approach is most
suitable, a series of experiments were run evaluating the run
time performance of each of the four algorithms, using the 13k
CMUdict test set. The results of these evaluations are described
in Table 4. As described in the table, the explicit approaches,

FSA/T o Avg#States Avg #Arcs Time (nsec)
FSA N 8.50 10.25 98323
FSA Y 11.25 13.25 861695
FST N 8.50 136.40 191556
FST Y 11.25 188.60 1101230

Table 4: CMUdict word-to-FSM conversion characteristics for
4 different algorithms.

while slightly more complex, are consistently more efficient for
both w’ and w”. These versions were therefore utilized for all
subsequent experiments.

4. ARPA-to-WFST Conversion for joint
n-gram models

The simplest approach to model conversion using the WFST
framework represents back-off transitions in the LM as standard
e-transitions. It is possible to use the model in this approximate
form to compute model probabilities for novel sequences, how-
ever it tends to generate redundant paths, and it may in some
cases compute incorrect probabilities [1].

In [1] the authors describe two methods for achieving exact,
correct behavior for a WESA-based representation of a word n-
gram model. The first method utilizes the special semantics of
¢-transitions (failure), which encode the idea that an arc should
be traversed only in the event that no valid normal transition
exists leaving the state in question. This requires making sev-
eral modifications to the set of final states, and the final state
weights, but does not require the creation of new states or tran-
sitions. The second method creates an exact, offline, WFSA-
based representation using e-transitions, but requires the mod-
ification and creation of sometimes numerous new states and
arcs, thus we focus on the ¢-based method in here.

In the case of a joint n-gram model however, the algorithm
proposed in [1] produces incorrect results. This is because an
input grapheme may map to multiple output phonemes, but only
a subset of output phonemes may be represented explicitly via
outgoing transitions at a particular state. In such cases, the ¢
transition will not be traversed at all, resulting in only a small
subset of the potentially valid set of pronunciation hypotheses.

This problem and its solution are best described via graph-
ical examples. Figure 6 depicts a standard WFST-based repre-
sentation of a joint n-gram model. In this case back-off tran-
sitions are represented as standard e-transitions. In most cases
this will be a good-enough solution, however strictly speaking
it is inexact, and incorrect.



Figure 6: WFST-based representation of a simple G2P joint n-
gram model. Here back-off transitions are represented using
standard e-transitions.
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Figure 7: Illustration of attempting to compose linear FSA
“aab” with a WEST representation of a joint n-gram model
while interpreting back-off transitions as ¢ arcs. Green arrows
indicate arcs that are traversed, while red, dashed arcs indicate
arcs that are incorrectly ignored.

The ¢-based method from [1] may be applied directly to
a G2P joint n-gram model, however composition with novel
words will produce largely incorrect results. An illustration
of the model from Figure 6, this time modified to support ¢-
transitions, is depicted in Figure 7. This also illustrates the re-
sult of attempting to compose a short example word “aab” with
the model. Composition produces one hypothesis “AAB”, but
the valid alternatives, “EAB”, “EEB”, “AEB” will not be con-
sidered, because the dashed red arcs will not be traversed. Two
solutions to this problem are proposed in the following subsec-
tions. Explicit, fully-functional, open-source, BSD licensed so-
lutions are provided in [2].

4.1. Encode-based solution

One solution to the above problem involves encoding the n-
gram model, and generating WFST-based, encoded versions of
the input words. In this case, generation of the test-word WFST
is slightly more complex, but the standard ¢-based approach
from [1] may be used to generate the correct result from the
encoded machines. The encoded, ¢-ready version of the toy
model is depicted in Figure 8.

4.2. Transition modification solution

A second possible approach starts by applying the standard al-
gorithm from [1]. This is augmented by adding, for each state,
new outgoing transitions to ensure that, for any input label, there
is an explicit transition for each valid grapheme-phoneme cor-
respondence that was learned during the alignment process.

A graphical example using the same toy model is depicted
in Figure 9. Note that several new transitions have been added.
These added transitions guarantee that all valid pronunciation
hypotheses will be considered during composition.
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def fsa_phiify( fst,
fst generic_phiify (
for state in fst:
io_labels {}

all_io_labels ):
fst )

for arc in fst.Arcs( state ):
io_labels[arc.il] .append( arc.ol )
for il in io_labels:
for ol in get_missing(
io_labels[il],
all_io_labels ):
add_explicit_arc(
state, phi, il, ol, bo_w )

Listing 1: Python pseudocode for the fsa_phi algorithm.
add_explicit_arc () recursively traverses the back-off
arcs until an arc with the missing il /ol pair is found. Back-off
costs are accumulated, and a new arc connecting the original
state to the destination state of the found arc is created.
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Figure 8: Example of ¢-enabled WFST version of the toy G2P
joint n-gram model. Note that the input-output labels have been
encoded, resulting in a modified acceptor with joint labels. The
same encoder must be used to generate the FSA version of a
new input word.
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Figure 9: Example of modified ¢-enabled WFSA version of
the toy G2P joint n-gram model. In this case the model has
been modified to add explicit transitions for each non-explicit
grapheme-phoneme correspondence for each state. Transitions
that have been added are green and dashed.

4.3. Performance evaluations

The three alternatives listed above entail different size, speed,
and potentially accuracy characteristics.

The performance profiles for the three representation ap-
proaches for the CMUdict and NETtalk dictionaries are de-
scribed in Table 5. Note that both ¢-transition approaches pro-
duce the exact same PER/WER results. The fst_phi ap-
proach is notably slower than the other two approaches, how-
ever this is due primarily to the multiple encode and decode
operations required for each word. The fsa_phi approach
is only marginally slower than the e-based approach, but the
transition modifications impose a significant penalty in terms of
model size. In particular, both the fsa_eps and £st_phi ap-



Decoder type PER/WER[%] Model Parameters Time[s] Avg. w o M Parameters
(CMUdict) (1-best) ##States #Arcs Size[M] n=1/n=5 #States / Arcs / Epsilons
fsa_eps 8.24/33.55 128557 282168 5.8 1.95/129.42 1547292 /157
fsa_phi 8.24/33.59 128557 882312 15 1.91/3.81 132 /664 /58
fst_phi 8.24/33.59 128557 282168 5.8 3.73/6.75 132 /664 /58
(NETtalk) (1-best) #States #Arcs Size[M] #States / Arcs / Epsilons
fsa_eps 5.85/24.43 779024 1657271 34 13.59/354.60 338 /660 /359
fsa_phi 5.85/24.42 779024 13296429 212 16.83/42.75 308 /4582 /232
fst_phi 5.85/24.42 779024 1657271 34 45.79/74.24 308 /4582 /232

Table 5: CMUdict and NETtalk PER/WER results, model parameter information, average decoding speed for n=1 and n=5, and corpus
averaged lattice characteristics for the w o M composition for three decoder configurations. Times were averaged over 5 runs.

proaches result in a model size of 34M while the fsa_phi ap-
proach results in a final model size of 212M. The results for the
smaller NETtalk dictionary show similar relative performance
characteristics.

4.4. Generating n-best candidates

In the case of the 1-best hypothesis there is little variation
among the different approaches in terms of accuracy, and the
e-based solution tends to be the fastest for larger dictionaries.
This situation is notably different however, when generating n-
best hypotheses. This is due to the fact that the inexact e-based
solution generates multiple paths for each hypothesis, because
the back-off transition is traversed regardless of the presence or
absence of a higher-order n-gram in the model. This means that
often, in order to obtain a fixed number of unique n-best hy-
potheses, a considerably larger percentage of each lattice must
be traversed in order to filter redundant paths that differ only in
terms of e-arc placement. The present implementation of this
is in the epsilon case is somewhat crude, in that the user sets a
heuristic n-best beam for the entire test set, and this is used as
the basis for pruning the raw lattice.

The two right-most columns in Table 5 illustrate the relative
run times for the three decoding approaches in the case of 1-best
and 5-best hypotheses, as well as the average number of states,
transitions, and e-transitions contained in the pronunciation lat-
tices that result from computing w o M, and projecting the out-
put labels. The simple e-based solution is clearly much slower,
and on average generates significantly more e-transitions. This
is largely due to the number of redundant paths generated by
this approach, but also due to the implementation.

The fsa_eps approach could conceivably be sped up by
implementing a specialized n-shortest paths algorithm that fil-
ters paths differing only based on e-placement. Note how-
ever that e-transitions do occur in the lattices generated by
the fsa_phi and fst_phi solutions. These correspond to
deletions, transitions where the input grapheme mapped to the
empty label. Although much rarer, this can also be a source
of path redundancy, and a modified n-shortest paths implemen-
tation would benefit these solutions to a small degree as well.
One could also remove epsilons prior to applying shortest path,
however in practice this tends to be much slower and more ex-
pensive, this is also true for weighted determinization in this
case.

5. Conclusions and Future work

This paper proposed several new, minor algorithmic develop-
ments related to WEST-based G2P conversion using joint n-
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gram models. It profiled four different approaches to convert-
ing input target words to finite-state machines, showing that,
in this case explicit conversion algorithms, rather than WFST-
based methods, produce more efficient results.

It also proposed two new algorithms, which extend the
work in [1], and make it possible to convert joint n-gram models
to equivalent Weighted Finite-State Transducers in such a way
as to make them compatible with exact evaluation using the spe-
cial semantics of failure-transitions. These two algorithms were
then pitted against the default, epsilon-based method and their
performance characteristics compared using two well known
standardized pronunciation dictionaries of varying size and
complexity. The results of these evaluations show that the pro-
posed approaches are comparably efficient and achieve accu-
racy equal to that of the e-based approach for 1-best results, but
are significantly faster when generation of n-best hypotheses is
required.

A final implication of this work is that, as in so many other
areas of experience, an ensemble solution provides the best bal-
ance between competing interests. In this case, this means com-
bining both WFST-based and non-WFST-based methods into a
hybrid system, thereby producing a result that jointly optimiz-
ing competing concerns of speed, accuracy, and intelligibility.

In future it may be interesting to consider other transforma-
tion approaches, or look in more detail at the impact that these
choices have on specific downstream lattice rescoring methods.
Furthermore, all three approaches would benefit from a modi-
fied n-shortest path implementation that filters redundant paths.

Finally, the source code, test sets, models and scripts spe-
cific to this paper are all available as a bundle on the downloads
page of the project website.
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