
Dynamic Grammars with Lookahead Composition for
WFST-based Speech Recognition

Josef R. Novak1, Nobuaki Minematsu1, Keikichi Hirose1

1Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
{novakj,mine,hirose}@gavo.t.u-tokyo.ac.jp

Abstract
Automatic Speech Recognition (ASR) applications often em-
ploy a mixture of static and dynamic grammar components, and
can thus benefit from the ability to efficiently modify the sys-
tem vocabulary and other parameters in an on-line mode. This
paper presents a novel, generic approach to dynamic grammar
handling in the context of the Weighted Finite-State Transducer
(WFST) paradigm. The method relies on a straightforward ex-
tension of the lexicon and underlying grammar components,
and leverages the ideas of on-the-fly composition and delayed
construction to efficiently generate the recognition search space
on-the-fly. The alternative partitioning of component models
that this approach implies can also result in significant stor-
age savings. In contrast to previous works in this area, the
proposed method relies only on generic WFST operations and
the context-dependency, lexicon and grammar components that
form the basis of standard ASR cascades.
Index Terms: WFST, ASR, Dynamic vocabulary, Spoken dia-
log systems

1. Introduction
Automatic Speech Recognition (ASR) applications often utilize
a mixture of static and dynamic grammar components and can
thus benefit form the ability to efficiently switch or manipu-
late these components. In the context of systems based on the
Weighted Finite-State Transducer (WFST) paradigm however,
correctly splicing together the component grammars at run-
time can be complicated. In particular some solution must be
found to correctly and efficiently enforce cross-word context-
dependency constraints for any dynamic components despite
the fact that this information may not be known ahead of time.
In this paper we present a new solution to this problem which
leverages the idea of lookahead composition [1] and straight-
forward extensions to the lexicon and grammar components.
This contrasts with the approach previously proposed in [2],
which relies on specialized “enforcer” FSTs to correctly gener-
ate cross-word context dependency information when splicing
dynamic component grammars.

The remainder of the paper is structured as follows. Sec-
tion 2 provides background. Section 3 describes the proposed
solution in detail. Section 5 concludes the paper and discusses
future directions for the current work.

2. Speech Recognition with Weighted
Finite-State Transducers

The WFST paradigm has gained considerable popularity in the
ASR and spoken language processing communities in recent
years [3, 4, 5, 6]. This approach typically relies on an inte-
grated recognition cascade, which is constructed by first trans-
forming the component knowledge sources - acoustic model,

pronunciation lexicon and grammar - into equivalent finite-state
representations, and then iteratively composing and optimiz-
ing them. In the current work we focus on a three-component
cascade comprising a context-dependency WFST C that maps
context-dependent triphone sequences to monophones, a pro-
nunciation lexicon L that maps monophone sequences to words,
and a grammar G, usually represented as an acceptor, that mod-
els word sequences.

The WFST paradigm provides a wide range of optimiza-
tion techniques which can be applied to arbitrary transducers
or acceptors in order to eliminate ambiguity, minimize the to-
tal number of states or transitions, push weights, synchronize
labels, and remove epsilon transitions. There are many possi-
ble integration combinations given the set of component mod-
els and variety of optimization algorithms, each of which im-
plies a different trade-off between competing factors of Word
Accuracy (WACC), Real-Time Factor (RTF), build-time, stor-
age requirements and RAM. In the present work we start with
the following baseline construction:

π(C ◦ det(L ◦G)), (1)

where π refers to auxiliary symbol removal, det refers to
determinization and ◦ refers to standard composition while
the C, L, and G components are as described above.

2.1. On-the-fly Composition

The static construction described by Eq. 1, and in particular the
det(L ◦G) operation, can be quite costly, especially in the case
of large language models. In response to this concern, several
approaches to on-the-fly composition have been proposed in re-
cent years [1, 4, 5]. These alternatives avoid the often costly
construction of the full, static cascade by performing composi-
tion at runtime as part of the decoding process. This can also
result in a significant memory savings during decoding because
only a small part of the full search space is ever expanded for
any individual utterance [1]. In [1] the authors proposed a series
of generalized filters that greatly speed up the composition pro-
cess by preventing the creation of dead-end states and prepro-
cessing weights, labels and epsilon transitions. This approach
has been implemented in OpenFst [7] and is the one we adopt
for this work. When using lookahead composition for speech
recognition applications, the component WFSTs - C, L and G
- remain the same, but an alternative partitioning is utilized:

π(C ◦ det(L)).G, (2)

where we use “.” to refer to lookahead composition. In the
above case the (C ◦ det(L)) and G components are precom-
piled, but the lookahead composition operation is performed
at runtime, as part of the decoding process. Because the full
cascade need not be statically expanded, a significant savings



in both storage space, build-time and on-line memory require-
ments can be achieved, with only minor impact to decoding
speed [1, 5]. The following section describes how on-the-fly
composition can be leveraged to produce a novel, efficient and
straightforward alternative approach to dynamic grammar man-
agement for WFST-based systems.

3. Dynamic grammars with Lookahead
composition

Previous work in this area has focused on an approach where
the top-level grammar as well as any component grammars are
precompiled as much as possible into fully expanded C ◦L ◦G
cascades [2]. Cross-word context-dependency issues were then
handled through the use of specialized enforcement transduc-
ers that correctly enforced constraints, either through the use
of on-line composition, or through modifications to the de-
coder core [2]. The series of operations is described in [2] as
E◦splice(C′LG,D) where E represents the enforcement FST,
C′ represents a context-dependency transducer that has been
factored into left and right components, and D represents the
set of dynamic grammars.

The solution we propose instead focuses on the C ◦ det(L)
and G lookahead partitioning described in Subsection 2.1. Cor-
rect context-dependency constraints for component grammars
and dynamic vocabulary are enforced through straightforward
extensions to the lexicon, and a reinterpretation of the grammar
components as transducers as opposed to acceptors.

3.1. Modifying C ◦ det(L)

The C ◦ det(L) component maps context-dependent triphone
sequences to words. The closure operation is applied to L prior
to composition with C which ensures that sequences of words
can be handled. Under the proposed approach the pronunci-
ation dictionary is augmented with entries for each of the in-
dividual monophones defined in the acoustic model. The pro-
nunciation dictionary is then transformed in the standard way.
When the augmented L is composed with C, the resulting
C ◦ det(L) WFST encodes not just word sequences, but also
transitions between words and monophones, and all possible
context-dependent triphone information. Effectively it exposes
the output side of the C transducer through the lexicon. The
augmented C ◦ det(L) WFST is larger than the original, but
the difference is not great, even in the case where positional-
ized monophones are utilized. Table 1 illustrates the differences
between the Proposed and Standard constructions for both a
106k lexicon dervied from the Corpus of Spontaneous Japanese,
and a smaller 8k lexicon from the Kyoto Tour dialog corpus. In
both cases the underlying acoustic models contained 168 po-
sitionalized monophones. The Proposed construction results

Table 1: Cascade characteristics for optimized C ◦det(L) com-
ponents for 8k and 110k lexicons. The Proposed construction
is augmented with positional monophones.

C ◦ det(L) Arcs States Size / lkhd size
Stand. (8k) 65,956 34,152 1.2M / 2.4M
Prop. (8k) 386,493 43,236 6.4M / 7.2M
Stand. (106k) 222,019 72,346 4.2M / 6.2M
Prop. (106k) 930,539 438,660 19M / 31M

in a significantly larger C ◦ det(L) component. In the Stan-
dard construction only those positional monophones that actu-

ally occur in the lexicon need be considered, however in the
Proposed construction these unseen contexts must also be ex-
panded as depicted in Figure 1. The relative cost of computing
the lookahead information is also increased, due both the larger
phoneme inventory and the increased complexity of the cross-
word context-dependency information. If the underlying acous-
tic model does not employ positional monophones the relative
increase in size and complexity is greatly reduced. Although
the Proposed C ◦ det(L) construction is notably larger, we
note that one copy of this component can potentially be shared
among many top-level grammars without modification.

3.2. Modifying G

In a standard WFST cascade the grammar or G element is usu-
ally represented as a Weighted Finite-State Acceptor (WFSA)
instead of a WFST. This reflects the fact that statistical N -
gram models as well as expert grammars typically model word
sequences and do not transduce anything. In the proposed
method however, we opt to explicitly treat G as a synchro-
nized WFST with matching input and output labels. Each of
the sub-grammar components is then represented as a WFST
mapping monophone sequences to words. In the case where a
sub-grammar component is simply a word or list of words, it is
sufficient to generate a new lexicon transducer, Ln. If a word
from a sub-grammar is already covered in the base lexicon, then
a word-level representation will suffice. If the sub-grammar
is itself an N -gram model or regular-expression based expert
grammar, then the component takes the form Ln ◦ Gm. Thus
the same tools used to create the base L and G can be reused to
generate sub-grammar components Ln◦Gm and no specialized
FSTs are required. Each sub-grammar can be pre-compiled and
optimized without consideration of internal or external context
with one exception. In the case where a sub-grammar com-
ponent itself contains non-terminal symbols, the non-terminal
symbols should be placed only on the output side of the com-
ponent and synchronized with the epsilon symbol on the input
side. During replacement nonterminal symbols with input ep-
silon arcs are treated as acceptors. The replacement operation
replaces both the input and the output. This guarantees both
that subsequent replacement operations will be successful, and
that the output symbol table for the C ◦ det(L) component can
be shared by any top-level grammar or sub-grammar. Figure
2 depicts a top-level grammar with an unresolved non-terminal
corresponding to a simple telephone grammar. Figure 3 depicts
a simple example of an L◦G sub-grammar representing a possi-
ble resolution of the non-terminal ε:<name> symbol in Figure
2.

3.3. Symbol management

One final concern is proper management of the unified output
symbol table. One solution is to use a global namespace but,
as described in [2], this is may not work if sub-grammars are
shared, or if the lexicon is generated dynamically. The authors
from [2] employ an alternative solution using a “shim” layer
which maps one namespace to another. In our approach, the
top-level symbol table is compiled at run-time in a recursive
manner, reflecting the structure of the underlying components.
As each sub-grammar is loaded, its output symbol table is com-
pared against the component it is being bound into. Missing
symbols are added to the parent table and the sub-grammar is
relabeled. The process terminates once all non-terminals in the
top-level grammar have been resolved.



   









Figure 1: A partial representation of the Proposed alternative C ◦ det(L) construction corresponding to a simple telephone
application. Monophone entries in the lexicon ensure that all possible crossword contexts are supported, and make it possible
to add new vocabulary items as needed. Default vocabulary entries function as normal. In practice the closure operation is
applied to the CL component, ensuring support for arbitrary word sequences and recursive subgrammars.

   

Figure 2: Explicit WFST representation of top-level grammar for a simplistic telephone application.

 

























Figure 3: Explicit WFST representation of top-level G component, following replacement with a sub-grammar for the regular
expression /Chris|Ala|Lee|Billy/. After replacement of the “ε:<name>” non-terminal, the input side is a mixture of word
and monophone labels. The name “Billy” is covered in the baseline dictionary, thus in this case there is no need to provide an
explicit monophone pronunciation.

3.4. Putting it together

The underlying decoding process is unchanged to that used
for either static decoding or lookahead composition. We have
implemented the proposed approach in an OpenFst [7] based
WFST decoder based on Juicer [8] which we are currently de-
veloping. All of the component WFST operations which the
proposed approach relies upon: replacement, arc sorting, and
composition admit a lazy implementation where the result is
computed on-demand. These delayed operations are likewise
supported by OpenFst. Thus, once the modified C ◦ det(L)
component, the top-level grammar, G and any sub-grammars
are prepared and compiled it is sufficient to construct a cas-
caded, delayed transducer,

(C ◦ det(L)) . arcsi(repl(G, g1, ..., gn)) (3)

where arcsi refers to input arc sorting - a requirement for
lookahead composition, and repl refers to replacement, which
may be recursive depending on the structure of the grammar.

This WFST can then be expanded on-the-fly during recognition,
thereby also eliminating any need to statically perform the re-
placement operation and providing a considerable memory sav-
ings, particularly in the case of larger top-level grammars with
numerous dynamic word classes.

4. Experiments
We first evaluated the proposed approach using a modified ver-
sion of the WSJ [9] si dt s2-20k task including 204 test sen-
tences. In addition to an open-vocabulary 2-gram LM, and the
standard 20k lexicon, we generated a single dynamic word class
for a list of 159 OOV and other words. The dynamic word class
was then bound into the top-level N -gram model and used to
replace the unknown word token. We evaluated the WACC vs.
RTF performance of the proposed method in two different ways.
In the first instance all replacement operations were performed
statically prior to decoding, while in the second the replacement
operations were also carried out on-the-fly. Both scenarios used



!"#

$%#

$&#

$'#

$!#

%()# %(&# %(*# %('#

!
"#
$%
&
''
(#
)'
*%

+,)-./01,%2)'3"#%

405$3546.678%9/2%'"1:"4,;%#,:-)',%

+,-./#0123-/1#
456#0123-/1#

Figure 4: WACC vs. RTF comparison of static compilation of
G versus dynamic replacement.

lookahead composition to compose the C ◦ det(L) and G com-
ponents on-the-fly. The results of the experiments are depicted
in Figure 4, and are in-line with previous results for this partic-
ular test set [10]. The results show that the proposed approach
is reasonably efficient applied to a mid-size top-level grammar.
Dynamic replacement imposes an additional RTF penalty on top
of dynamic composition, but this also appears to be acceptable.

The preceding experiments illustrate the reasonable effi-
ciency of the approach in a simple configuration, however spo-
ken dialog systems often consist of a smaller top-level grammar
and a wider variety of sub-grammars. We have recently begun
to apply the proposed approach to such a system focusing on
the tour guide domain. In this system a smaller top-level bi-
gram LM with a 8242 word vocabulary is augmented with three
dynamic classes including landmarks, people and organization
names - totaling to 8681 unique words. The storage savings that
the proposed approach leads to are decent, especially for larger
grammars. Table 2 depicts the cascade storage characteristics
for a larger 3-gram version of the tour guide application. The

Table 2: Storage requirements in MB for a trigram version of
the tour guide application using 3 dynamic word classes.

Cascade type Size
Static (C ◦ det(L)).G 174MB
C ◦ det(L), static G 63.6MB
C ◦ det(L), dynamic G, g1, ..., gn 20.7MB

3-gram version resulted in a larger RTF penalty, probably due
to the greatly increased number of dynamic elements, as well
the naive pruning approach currently employed by our decoder,
but still ran at faster than real-time.

5. Conclusions and Future work
In this paper we have introduced a novel WFST-based ap-
proach to dynamic grammar management that leverages on-the-
fly lookahead composition and a re-casting of the C ◦ det(L)
and G component FSTs. We have shown that the approach is
both flexible and fairly efficient, and affords a straightforward
implementation.

Further experiments are still needed, and In future we plan
to further investigate in more detail the impact that larger dy-
namic vocabulary components, as well as the number of com-

ponents have on decoding RTF, particularly in the case of larger
N -gram style top level grammars. It may be possible to fur-
ther improve performance in this case by utilizing subword units
other than monophones. We are also interested in the potential
of applying the proposed approach to Out of Vocabulary (OOV)
modeling.

6. References
[1] C. Allauzen, M. Riley, and J. Schalkwyk, “Filters for efficient

composition of weighted finite-state transducers,” in CIAA, 2010.

[2] J. Schalkwyk, L. Hetherington, and E. Story, “Speech recogni-
tion with dynamic grammars using finite-state transducers,” in
Eurospeech, 2003, pp. 1969–1972.

[3] M. Mohri, “Finite-state transducers in language and speech pro-
cessing,” in Computational Linguistics, 1997, vol. 23, issue 2.

[4] D. Caseiro and I. Trancoso, “Using dynamic wfst composition for
recognizing broadcast news,” in ICSLP, 2002, pp. 1301–1304.

[5] T. Hori, C. Hori, and Y. Minami, “Fast on-the-fly composition for
weighted finite-state transducers in 1.8 million-word vocabulary
continuous speech recognition,” in Interspeech, 2004, pp. 289–
292.

[6] M. Mohri, F. Pereira, and M. Riley, “Speech recognition with
weighted finite-state transducers,” in Springer Handbook of
Speech Processing, 2008, pp. 1–31.

[7] C. Allauzen and M. Riley, “Openfst: A general and efficient
weighted finite-state transducer library,” in tutorial, SLT, 2010.

[8] D. Moore, V. Valtchev, Magimai M., O. Vepa, O. Cheng, and
T. Hain, “Juicer: A weighted finite state transducer speech de-
coder,” in InterSpeech, 2005, pp. 241–244.

[9] D. Paul and J. Baker, “The design for the wall street journal-based
csr corpus,” in ICSLP, 1992, pp. 357–362.

[10] J. Novak, P. Dixon, and F. Furui, “An empirical comparison of the
t3, juicer, hdecode and sphinx3 decoders,” in InterSpeech 2010,
2010, pp. 1890–1893.


