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1 Introduction  
Pronunciation errors are often made by 

learners of a foreign language. Especially when 
the target language contains some phonemes that 
are not found in learners’ native language, learns 
tend to replace these phonemes with ones 
existing in their native language. Automatic 
detection of these errors is an essential technique 
in CALL systems [1], which can accelerate 
foreign language learning. 

A novel and structural model of pronunciation 
has been recently proposed, which works 
efficiently to discard the non-linguistic aspects of 
speech, which are irrelevant to pronunciation 
assessment, and keep the linguistic aspects well 
[2]. Besides, this structure model has been 
applied to speech recognition [3], speech 
synthesis [4], overall pronunciation scoring [5], 
and dialect-based speaker clustering [6]. This 
paper reports our first trial to apply our structural 
model to phoneme error detection. 

2 Materials 
We create two native databases by asking 

native speakers to read given sentences. While 
one is error free, named Chinese Read by Natives 
(CRN), the other contains phoneme errors 
intentionally introduced by the speakers, named 
Chinese Read by Natives with Errors (CRN-E). 

Both the databases are constructed in the 
following way. At first, 17 sentences are selected 
from a Chinese textbook [7] as reading material. 
In CRN database, 4 Chinese speakers are asked 
to read the material to form CRN database. 

Then, through discussion with Chinese 
teachers, 8 target phonemes are selected, which 
are the most problematic and difficult phonemes 

for Japanese learners to pronounce correctly. 
Further, for each target phoneme, its competitive 
one is selected, which is often substituted 
incorrectly by Japanese students for the target 
phoneme. Table 1 shows the 8 phoneme pairs. 
For example, when Japanese wants to pronounce 
/sh/, he may pronounce /x/ instead. 

Table 1 Eight target phonemes and their 
competitive ones 

Targets zh ch sh v er ing eng ang 

Competitive j q x u a in en an 

Because of difficulty of preparing a labeled 
non-native speech database, [8] prepared data of 
phoneme errors by changing phoneme-based 
transcripts. [8] shows technical effectiveness and 
validity of this “artificial” preparation. In our 
study, artificial data is created by asking natives 
to read sentences with intentional errors. 48% of 
the instances of the 8 target phonemes are 
replaced by their competitive ones in the reading 
material. 9 native speakers are asked to read this 
material. Each speaker read 3 times per sentence. 
Their utterances formed a database of CRN-E. 

Moreover, 30 speakers in NICT database [9] 
are used for training native phoneme HMMs and 
determining GOP thresholds. Summary of the 3 
databases is shown in Table 2. “#M/F” represents 
the number of male and female speakers. “#U” 
represents the number of utterances. 

Table 2 Summary of the 3 databases 
Name #M/F #U Usage 
CRN 2/2 80 Teachers’ structural 

model 
CRN-E 5/4 459 Testing data for the three 

error detection methods 

NICT 10/10 5000 Native HMM training  
5/5 2500 GOP thresholds 
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3 Methods 
3.1 Goodness of Pronunciation (GOP) 
and Likelihood Ratio (LR) 
GOP calculates the likelihood ratio that a 

phoneme realization corresponds to the phoneme 
that should have been spoken [10]. A GOP score 
of phoneme /x/ is a posterior probability of the 
phoneme given corresponding speech segment, 
which is approximated by (1). O is the speech 
segment obtained for /x/. 

 
By using correctly pronounced data and 

incorrect data, distribution of GOP scores of 
correct pronunciation and that of errors can be 
obtained. By using target phoneme dependent 
threshold α, we can do error detection [8]. If 
GOP(x,O)≥α, segment O is judged as correct and 
otherwise not.  

In data collection, the correspondence between 
intended phonemes and substituted phonemes is 
assumed to be fixed as in [8]. Hereafter, we use 
/x/ as intended phoneme and /y/ as substituted 
phoneme. In preparing the CRN-E database, we 
used the information of /y/. But GOP does not 
exploit this information, which makes GOP not a 
fair comparison with our SVM method. So, LR is 
also tested [11]. An LR score of phoneme /x/ is 
calculated by taking the absolute difference of the 
log probability calculated through the forced 
alignment as /x/ and that as /y/. In error detection, 
if the LR score is higher than 0, O is judged as 
correct and otherwise, not. 

 
3.2 Structural features 

This section explains the process of extracting 
structural features. An utterance is represented by 
a sequence of feature vectors, which is then 
converted into a distribution sequence. Distance 
between every distribution pair is calculated as 
root of Bhattacharyya distance. A full set of 
distances, i.e. distance matrix, is used to represent 
this utterance [2]. Suppose that a teacher and a 
student read the same sentence and both the 
utterances are converted into distance matrices of 
{Sij} and {Tij}. The structural deviation related to 

phoneme i is calculated by (3), which quantifies 
the magnitude of structural difference as for 
phoneme i between the teacher and the student 
[5]. M is the number of distributions, which can 
be phonemes or states. 

 
3.3 Support Vector Machine 

One problem in structural features is that not 
all the elements in {Dij} are supposed to 
contribute to (3) with the same importance. When 
multiple phonemes are incorrectly pronounced in 
a sentence, the distance to one of the erroneous 
phonemes will impede the detection performance. 
So, we introduce SVM to solve this problem. Let 
xi represent a structural difference vector of 
phoneme i, and yi represent a 1/0 label of xi. 
Given a training set of instance-label pairs of 
(xi,yi), the SVM is obtained by solving the 
following problem [12]: xi is mapped into a 
hyperplane by function ∅, b is the bias term of 
the hyperplane. C(>0) is the penalty parameter of 
the error term εi. W is the weight vector of xi.  

 
3.4 Performance measures 

Error detection produces four basic outcomes: 
#correct acceptances (CA), #correct rejections 
(CR), #false acceptances (FA), #false rejections 
(FR) [8]. The performance of an error detection 
algorithm can be measured as scoring accuracy, S 
A = (CA+CR)/(CA+CR+FA + FR) [8]. Besides, 
we define Precision of CA (PCA), Precision of 
CR (PCR) [8], False Rejection Rate (FRR), False 
Acceptance Rate (FAR), Average Error Rate 
(AER) [13] as follows: PCA = CA /(CA + FA), 
PCR = CR / (CR + FR), FAR = FA / (CR + FA), 
FRR = FR / (CA + FR), and AER = (FAR + 
FRR)/2. 

4 Experiments and Results 
4.1 GOP and LR-based error detection 
In the NICT database, artificial pronunciation 

errors are created by changing the transcript as in 
[8]. Some instances of the phonemes in the 
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second row of Table 1 are replaced by their 
competitive phonemes in the first row. Then, 
GOP scores of correct pronunciations and those 
of mispronunciations are calculated separately. In 
Fig.2, the GOP distribution of /sh/ (correct 
pronunciation) is drawn in blue, while the GOP 
distribution of /sh/ with error (real pronunciation 
is /x/) is drawn in red. We set the threshold so as 
to minimize the classification error. The 
thresholds of all the target phonemes are obtained 
from their corresponding distributions. 

 
Fig. 2 Probability distribution of /sh/ GOP scores 

Finally, each instance of the target phonemes 
of the testing utterances is judged as correct or 
not using GOP and LR. Table 3 shows our results 
and the results of other studies just as reference. 
From the table, SA is 0.82 in [8], where the target 
language is Dutch and it is 0.60 in [13] where it 
is Mandarin. This large difference is due to 
language difference. Comparing the performance 
in the same language, our SA is similar to [13], 
while we have a better result of FRR but a much 
worse result of FAR. Here, due to differences of 
other experimental conditions, we do not discuss 
the performance difference to [13] any further. 

Results of LR-based error detection in CRN-E 
databases are also shown in Table 3. SA of LR is 
much higher than the result of GOP. Specifically, 
FAR is reduced greatly in LR-based error 
detection but FRR increased slightly. 

Table 3 GOP and LR-based error detection 
 Our study [13]  [8] 

Language Mandarin Dutch 
Methods GOP LR GOP GOP 

SA 0.59 0.75 0.60 0.82 
PCA 0.58 0.77  0.82 
PCR 0.65 0.73  0.81 
FAR 0.75 0.26 0.42  
FRR 0.12 0.24 0.24  

AER 0.43 0.25 0.33  
4.2 SVM with structural features 
When using SVM with structural features in 

error detection, firstly, structural features should 
be extracted. Forced alignment is firstly done 
using the NICT phoneme HMMs and, then, using 
the boundary information, Viterbi training is 
done to train an HMM only for that utterance. 
Each utterance of each student and that of each 
teacher is converted to its HMM and its distance 
matrix. Here, each phoneme instance is treated 
separately. An M×M distance matrix has to be 
estimated for an utterance, where M is the 
number of phoneme instances in the utterance.  

As for SVM, LIBSVM [14] is adopted. The 
CRN-E database is divided into training part and 
testing part. For each sentence, the teachers’ 
matrix is obtained as the average matrix among 
the four teachers. Then, equation (3) is used to 
obtain the structural deviation of each phoneme 
instance in each of the students’ utterances. 

Then, a leave-one-out cross-validation test is 
done. For a sentence, we set 1 speaker out of 9 as 
testing data and the other speakers as training 
data for SVM with the linear kernel. By changing 
speaker assignment, we used all the speakers as 
testing speakers. Table 4 is the average 
performance over the 9 experiments. We can see 
that the proposed SVM with structural features 
work better than the baseline LR-based method in 
all measures. Especially, PCR is increased by 
29.4% and FRR is decreased by 81.5%. 

Table 4 Comparison of error detection using 
LR-based and SVM with structural features 
 LR SVM+str. features Comparison 

SA 0.75 0.88 +17.3% 
PCA 0.77 0.85 +9.2% 
PCR 0.73 0.94 +29.4% 
FAR 0.26 0.21 -20.8% 
FRR 0.24 0.04 -81.5% 
AER 0.25 0.13 -49.8% 

4.3 Use of partial structural matrices 
In the CRN-E database, error position is fixed. 

So, in a sentence, some instances of a target 
phoneme are always correct and the others of the 
same target phoneme are always incorrect. This 
strategy of fixed assignment will be beneficial for 
SVM training. So, we test SVM using no edge 
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related to the 8 target phonemes, where a target 
phoneme instance is evaluated only with its 
relations to all the non-target phonemes. Results 
are shown in Table 5. Further, we ran another test 
to evaluate the robustness of the structure-based 
SVM experimentally. Here, cross-gender error 
detection is done, whose results are also shown in 
Table 5. They are results of the two cases where 
training speakers for SVM are only 3 males and 3 
females, respectively. Each performance measure 
shows very similar scores. This indicates very 
high robustness of our proposed method. 

Table 5. Results of using partial matrices 

Test types 
Cross-gender 

Leave-one-out 
3 male 3 female 

SA 0.84 0.84 0.83 
PCA 0.80 0.80 0.78 
PCR 0.91 0.92 0.92 
FAR 0.27 0.28 0.31 
FRR 0.06 0.05 0.05 
AER 0.16 0.17 0.18 

5 Conclusion 
In this paper, the most problematic phonemes 

for Japanese learners of Chinese are defined and 
error detection for these phonemes is investigated. 
We designed two new databases, one of which 
included intentional phoneme errors generated by 
natives. Three methods of error detection are 
tested, where partial matrices as well as complete 
matrices are examined. Our proposed SVM with 
structural features works much better than both of 
the GOP-based and LR-based baseline methods. 

One problem is that the errors are limited to 
the 8 target phonemes. SVM’s good performance 
may be due to the assumption that the non-target 
phonemes are always pronounced correctly. One 
possible solution is collecting a large amount of 
learners’ data with labels, with which unreliable 
edges will be ignored through SVM training 
automatically. We are also planning to use real 
Japanese learners’ data in the near future. 
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