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あらまし 書記素列に対して音素列を推定する課題（書記素音素変換）は、音声認識や音声合成システム構築におい
て重要な位置を占める。特に英語やフランス語などでは、書記素対音素の対応が複雑であるため、OOVに対して音素
列を推定するために、高精度な書記素音素変換システムが必要である。本研究では、EM駆動の多対多アラインメント
手法と統計的 N-gramモデルを統合し、重み付き有限状態トランスデューサー（WFST）に基づいた書記素音素変換手
法を提案する。そして、この手法を用いた新しいオープンソースのWFST駆動書記素音素変換システムを構築する。
本システムは実用的かつ教育的な支援を目的に、WFSTフレームワークの上に構築されたものであり、第三者より提
供されたコンポーネントにも対応可能である。本稿では、本システムの精度を実験的に検証し、先行研究とほぼ同様
の精度を、より短時間の学習時間で実現している。
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Abstract This paper describes in detail some recent experiments for an Open-Source, WFST-based Grapheme-to-Phoneme

system, Phonetisaurus. The system comprises several loosely coupled components and includes implementations of several

G2P alignment algorithms, and simple 3-gram LMs, as well as support for several third-party components. Standard G2P

evaluations were also performed on widely available test sets for English. In particular, on the standard Jiang NetTalk test

sets, using an EM-based multiple-to-multiple alignment and a standard 6-gram language model with modified Kneser-Ney

smoothing, Phonetisaurus performs favorably compared to state-of-the-art benchmarks. We also note that combination of

reverse N-gram and forward N-gram models results in a modest performance gain on all the evaluated test sets with respect to

just one or the other, and further that the reverse N-gram models consistently outperform the forward N-gram models on all

the data sets.
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1. Introduction

Grapheme-to-Phoneme conversion (G2P) is an area that has re-

ceived much attention over the years, particularly for languages like

English and French where there is no general one-to-one correspon-

dence between graphemes and phonemes, or the way that words

are written compared to how they are pronounced. This inconsis-

tency is largely due to the practice, common in these languages

whereby foreign loan words are adopted with their original spelling,

or corresponding romanization, while the pronunciation is adapted

to the phonetic and phonotactic constraints of the target language.

The G2P problem is important in these languages for both Text-To-

Speech synthesis (TTS), and Automatic Speech Recognition (ASR).

In the former case G2P systems are used to produce likely pronun-

ciation candidates for synthesis systems, while in the latter they are

used to provide dynamic vocabulary support for Out Of Vocabu-

lary (OOV) words, and in reverse to provide likely romanizations

or spellings for novel phoneme sequences. Although relevant to

most languages, the problem is fairly tractable for many, such as

Finnish, Korean or even Spanish where the orthographic conven-

tions are consistent and loan word orthography is often forced to

adopt the orthographic conventions of the target language rather

than the original language of the loan word in question. For ex-

ample, the Spanish words “béicon” (bacon) and “cóctel” (cocktail),
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which are both English loan words, have since been adopted into

Spanish, but with spelling conventions that better reflect general

grapheme-to-phoneme correspondences in the Spanish language. In

contrast, English words like “rodeo” and “adobe” which have been

adopted from Spanish maintain their original Spanish-language or-

thography, but their pronunciation has been adapted to the con-

straints of English.

In summary, these issues in English have proven to be challeng-

ing, and a unified general solution that provides accuracy similar

to that achieved by these other more coherent languages has so far

proven elusive. This paper introduces another viable approach to

this problem, which we believe may also be naturally extendable to

similar problems in other languages, for example accent prediction

in Japanese. The remainder of the paper is structured as follows:

Section 2. summarizes some of the related research in this area, and

Section 3. describes the alignment sub-problem and our chosen so-

lution. Section 4. explains the N-gram based pronunciation model

and WFST conversion system that we employ. Section 5. provides

information on several sets of G2P experiments that we conducted.

Finally, Section 6. concludes the paper.

2. Related Work

Grapheme-to-phoneme conversion is the term applied to the pro-

cess of automatically generating pronunciation hypotheses given an

input orthography. It is an important issue for both speech synthesis

and automatic speech recognition for English and many other lan-

guages. Due to the relative seriousness of the problem in English,

much of the related literature has been devoted to evaluating systems

on English data, under the assumption that a solution that performs

well on English data should also be robust for other languages. The

simplest, most low-tech approach to building a G2P conversion sys-

tem is to manually create a map between phonemes and graphemes,

and to add additional manual rules where necessary. While this may

be sufficient for some special cases such as the Japanese Kana al-

phabets, the approach is extremely unwieldy for languages like En-

glish or French, both of which exhibit highly irregular orthographic

patterns. Much research has focused on data-driven methods for

training G2P systems, for example [1], [2], [3], [4], and [5].

The approach of Galescu in [1] presents one of the first exam-

ples based on joint grapheme/phoneme units. An advantage of this

model is that it may be applied both to G2P problems as well as

P2G problems with little modification. In [1] the authors employ a

basic 1-to-1 EM-based alignment procedure to align the grapheme

and phoneme pairs and a joint N-gram model to model higher level

correspondences. This joint N-gram model is also the model that

we employ, and it is discussed in greater detail in Section 4..

In [2] the authors compare the performance of a conditional max-

imum entropy model with a joint maximum entropy N-gram model

and a joint maximum-entropy N-gram model augmented with syl-

labification and found that the simple joint maximum entropy N-

gram model provides several advantages.

In [3] the authors employ a more advanced EM-based alignment

algorithm which allows the mapping of multiple-grapheme clusters

to multiple-phoneme clusters. They combine this with a traditional

Hidden Markov Model (HMM) to solve the G2P problem. The

same authors followed this up with a further advances in [4] where

they employ an online discriminative training framework to model

grapheme-to-phoneme correspondences. We employ the multiple-

to-multiple alignment algorithm that they describe in the present

work.

Finally, in [5] the authors propose a novel algorithm for perform-

ing joint sequence estimation as applicable to the G2P problem, and

show state-of-the-art results on many of the standard test data sets

used in this area. The results from [5] are utilized as a baseline for

our G2P experiments.

The basic G2P problem is succinctly formulated in [2] as follows:

given a grapheme sequence G, find the phoneme sequence P∗ that

maximizes Pr(P|G):

P∗ = argmax
P

Pr(P|G) = argmax
P

Pr(G, P) (1)

One approach to modeling this is via a joint source channel model

such as that described in [1]. The current work builds on this ap-

proach and also employs the WFST framework in a manner similar

to [8]. Specifically, given an orthography, G = (g1, g2, ..., gN), and a

pronunciation P = (p1, p2, ..., pN) the model is trained to compute:

N∏
k=1

Pr(< g, p >k | < g, p >1,k−1) (2)

Three improvements have been made to the basic idea outlined

in [8]. First the approach has been extended to support the multiple-

to-multiple G2P alignment procedure described in [3]. Second, it

has been extended to support reverse N-gram models, and third it

has been re-written as a modular, open-source project [12].

3. Alignment

In most cases pronunciation dictionaries do not contain

grapheme-to-phoneme alignments, thus it is necessary to first align

the grapheme and phoneme sequences in a pronunciation dictio-

nary, prior to building a pronunciation model. One approach is to

use a simple dynamic programming algorithm such as Needleman-

Wunsch [6]. In most previous literature, including [8], a 1-to-1

alignment procedure has been utilized. Instead, in this work we

utilized the EM-based multiple-to-multiple alignment procedure de-

tailed in [3] that supports alignments from digraphs such as “SH” to

a single phoneme, or the reverse case. This should be advantageous

for languages like English, where such mappings occur frequently.

Specifically this means that we can model problematic alignment

sequences like,

in a way that reflects the actual associations for these particular

words. This overcomes the problems presented by double letters
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TH O R A X

| | | | |
θ O R Æ KS

and double phonemes, both of which occur frequently in languages

like English and French. The algorithm itself is described in detail

in [3], and is reproduced here for the sake of completeness. This

algorithm is an extension of a more basic 1-to-1 stochastic trans-

ducer also trained with a variation of the EM algorithm and pro-

posed in [7]. A summary of the algorithm from [3] is presented in

Algorithm 1.

Algorithm 1 EM-based Many-to-Many Alignment
1: Input: xT , yV ,maxX,maxY

2: Output: γ
3: for all Mapping operations do
4: γ(z) B 0

5: for Sequence pair (xT , yV ) do
6: α B Forward Many-to-Many(xT , yV ,maxX,maxY)

7: β B Backward Many-to-Many(xT , yV ,maxX,maxY)

8: if (αT,V = 0) then
9: return

10: for t = 0...T do
11: for v = 0...V do
12: if (t > 0 ∧ DELX) then
13: for i = 1...maxX such that t − i >= 0 do

14: γ(xt
t−i+1, ε)+=

αt−i,vδ(xt
t−i+1, ε)βt,v

αT,V
15: if (v > 0 ∧ DELY) then
16: for j = 1...maxY such that v − j >= 0 do

17: γ(ε, yv
v− j+1)+=

αt,v− jδ(ε, yvv− j+1)βt,v

αT,V
18: if (v > 0 ∧ t > 0) then
19: for i = 1...maxX such that t − i >= 0 do
20: for j = 1...maxY such that v − j >= 0 do

21: γ(xt
t−i+1, y

v
v− j+1)+=

αt−i,v− jδ(xt
t−i+1, y

v
v− j+1)βt,v

αT ,V
22: Maximization step(γ)

In Algorithm 1 the approach works as follows. The expectation

step counts all possible grapheme-to-phoneme mappings for each

grapheme/phoneme sequence pair (x, y). The partial counts are

stored in the γ table, and the associated probabilities are stored

in the δ table. Here T and V refer to the lengths of x and y re-

spectively and maxX, maxY refer to the maximum allowable subse-

quence length for the graphemes and phonemes respectively. For

example maxX = 3 would imply that the maximum allowable

grapheme/letter subsequence length would be 3 letters. Similarly

the DELX and DELY variables determine whether or not deletions

or null transitions are allowed for the grapheme and phoneme se-

quences respectively. Various settings were explored for the maxX,

maxY , DELX, and DELY variables, and it was determined experi-

mentally that in most cases a maxX = 2, maxY = 2, DELX = True,

DELY = False produced the optimal alignments. One exception

図 1 An example word FSA for the test word ’right’, suitable for a system

using 1-to-1 alignment.

to this was the NETtalk database and all the test sets based on this

database. Here maxX = 1 and maxY = 1 produced optimal align-

ment results. The reason for this is most likely due to the much

smaller size of the database, as well as the fact that the NETtalk

phoneme inventory already includes several diphones.

4. Pronunciation Model

The pronunciation model followed the same general approach

that was described in [8]. The pronunciation dictionary was first

aligned using the EM-based multiple-to-multiple alignment proce-

dure described in the previous section. The actual pronunciation

model was then constructed via the following steps:

（ 1） Convert each aligned sequence, (g1, g2, ..., gn),

(p1, p2, ..., pn) to a sequence of aligned pairs,

(g1 : p1, g2 : p2, ..., gn : pn).

（ 2） Generate an N-gram model from the result of (1)

（ 3） Convert the N-gram model to a

Weighted Finite-State Acceptor

（ 4） Re-separate the individual grapheme/phoneme pairs into

input and output labels respectively, thereby turning the

WFSA into a WFST.

Note that in the case of Step 1, a single gi or pi may actually cor-

respond to more than one grapheme or phoneme depending on the

alignment parameters and either gi or pi could conceivably be the

empty symbol. However, it is always true that the length of g is

equal to the length of p for each sequence pair following alignment.

In the case of Step 2, the mit-lm language modeling toolkit was used

to generate an N-gram model with N = 6. The LMs were generating

using modified Kneser-Ney smoothing. In Step 3, the ARPA format

language model generated by mit-lm was converted to a WFSA uti-

lizing a modified version of the standard conversion algorithm de-

scribed in [9]. The algorithm was modified to split the combined

grapheme-phoneme input labels into grapheme input labels and and

output phoneme labels, thereby constructing a WFST rather than a

WFSA. A trivial example of such a pronunciation model WFST is

depicted in Figure 3.

Generating a pronunciation for a new word is achieved by com-

piling the word into a Finite-State Acceptor (FSA) and composing

it with the pronunciation model. An example of such a word FSA

is depicted in Figure 1 for the test word ’right’, in the case of a one-

to-one alignment. The case for multi-to-multi alignment is slightly

more complicated. In this case, a table was first generated con-

taining all grapheme clusters that were generated by the alignment

process. These clusters were then utilized to generate alternative
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図 2 Another example word FSA for the word ’right’, this time suitable for

a system using multiple-to-multiple alignment. Whether or not to use

a clustered arc, e.g., i → g → h versus i → gh will be determined at

runtime by the WFST encoding the pronunciation model.

図 3 An example of a WFST pronunciation model. The WFST accepts

graphemes (letters) as input and outputs corresponding phoneme se-

quences. The figure has been simplified to fit the page.

paths through the test FST, where appropriate. The maximum size

of the clusters is determined by the alignment parameters, however

it is important to note that not all possible clusters will be generated.

A possible example of such a test FST for the same word, ’right’, is

shown in Figure 2.

When the test model is combined with the WFST encoding

the joint N-gram model, the model will automatically determine

whether it is least costly to opt for the clustered arcs or the non-

clustered arcs, based on the context in which they appear and the

previously seen training data used to train the model.

4. 1 Decoding
The decoding procedure is a multi-step process consisting of a

cascade of standard WFST operations and a final formatting step.

The process is described in Equation 3.

Hlist = S hortestPath(Det(Pro jo(W ◦ M))) (3)

where Hlist refers to the weighted list of pronunciation hypotheses.

W refers to the FSA constructed from the input test word, and M

refers to the WFST constructed from the joint G2P N-gram model.

The ◦ operator denotes composition, the Pro jo operator indicates

that the output labels only are projected, thereby creating an FSA

containing just the hypothesized phoneme arcs corresponding to the

input FSA constructed from the test word. The Det operator refers

to determinization, and S hortestPath denotes the global shortest

path, or N-shortest paths. Here the best hypothesis is just the short-

est path through the composed WFST. A major advantage of this

approach is that each component of the final model can usually be

trained in a matter minutes. This is in contrast to [5] which often

requires many hours to train a model using the same data.

表 1 Results for 6 G2P test sets. Proposed vs. Bisani [5]. Figures in
%; (m) means m2m alignment, while (R), (F), and (C) refer to
Reverse N-gram, Forward N-gram and Combination system
respectively.

Test set Author PER WER
Celex Bisani [5] 2.5 11.4

Proposed(Fm) 2.6 12.4

Proposed(Rm) 2.7 12.2

Proposed(Cm) 2.6 12.3

OALD Bisani [5] 3.5 17.5

Proposed(Fm) 3.6 18.8

Proposed(Rm) 3.7 18.9

Proposed(Cm) 3.7 19.0

Pronlex Bisani [5] 6.8 27.3

Proposed(Fm) 6.9 28.4

Proposed(Rm 7.0 28.0

Proposed(Cm) 6.9 28.0

NETtalk15k Bisani [5] 8.3 33.7

Proposed(F) 7.3 34.3

Proposed(R) 7.2 33.9

Proposed(C) 7.2 33.6

NETtalk18k Bisani [5] 7.8 31.8

Proposed(F) 6.8 31.9

Proposed(R) 7.1 31.5

Proposed(C) 6.8 31.4

NETtalk19k Bisani [5] 7.7 31.0

Proposed(F)† 6.6 31.0

Proposed(R)† 7.3 30.0

Proposed(C)† 6.6 31.0

5. Grapheme-to-Phoneme Experiments

We conducted 7 sets of experiments with the system, utilizing

several well-known test sets from the G2P literature. The first set of

experiments evaluated Phonetisaurus alone on the popular NETtalk-

15k test set, using 3 alignment methods and N-gram orders from 2

to 7. The results of these experiments are depicted in Fig. 4. n > 6

resulted in over-fitting, thus n was set to 6 for the remaining ex-

periments. The multiple-to-multiple alignment supported up to 2-2

alignments, but for some test-sets 1-1 alignment performed best.

Further experiments were carried out to compare the proposed

system to existing results on other standard test sets. The re-

sults from these experiments are summarized in Table 1, where

PER refers to Phoneme Error Rate and WER refers to Word Error

Rate. PER was calculated according to the standard formula used to

compute Word Error Rate for large vocabulary speech recognition:

WER = S+D+I
N , where S refers to substitions, D refers to deletions,

and I refers to insertions. Pronunciation WER on the other hand

simply reflects a count of exactly correct hypotheses divided by the
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number of test items. Wherever possible the exact same testing

conditions as described in [5] and other literature were replicated,

however in some cases the exact testing and training data partitions

were not available. In the latter case a † indicates that the test par-

titions were not identical, but that the testing conditions were yet

replicated in a manner faithful to that described in the original lit-

erature. The performance for the proposed system and [5] system is

clearly very similar across all of the experiments. Our experiments

also showed that the appropriate alignment procedure depends on

the test set. The proposed approach has several advantages from

a development standpoint however; first it is highly modular, and

second it is very fast. The proposed system required 2m 55s train-

ing time for the NETtalk-15k data set whereas the [5] approach re-

quired many hours. The proposed system also supports multiple-to-

multiple alignment. Finally, the WFST framework ensures a com-

pact representation of the results, including n-best.

5. 1 Reverse N-gram models
Following the experiments described above, which we first re-

ported in the forthcoming [13], a simple alternative to the forward

N-gram approach was evaluated. This is a backward N-gram train-

ing procedure. The motivation for this approach was the simple

idea, as yet untested in the related literature as far as we are aware,

that grapheme-to-phoneme correspondences, at least in English, de-

pend more heavily on subsequent history features, than on past evi-

dence. The WFST framework made it quite trivial to train and test

this idea. The training procedure was set up by simply reversing

the grapheme and phoneme sequences in the original training data

and running the same two-step multiple-to-multiple alignment pro-

cedure followed by the N-gram model generation on this reversed

training data. Testing was then conducted by by building and then

reversing each FSA for the test data. This yielded a small but sig-

nificant improvement in the G2P WER performance on all test sets,

which is also illustrated in Table 1, by the results marked with the

(R) identifier. In particular on the NETtalk experiments this pushed

the proposed method past that reported in [5] on all counts. Interest-

ingly the improvements in WER were also accompanied by a much

smaller but still consistent degradation in the PER scores for all but

the NETtalk15k experiment. That is, the number of correct pronun-

ciation hypotheses increased, but the average number of phoneme

errors in incorrect hypotheses, which includes insertions, deletions

and mismatches, increased very slightly. One conceivable explana-

tion for the reduction in WER with the reverse N-gram models is

that they are more apt at modeling initial vowels. Further analysis

is required to determine the underlying cause for the slight increase

in PER.

5. 2 Model combination
Upon further investigation it was revealed that the errors pro-

duced by the forward and reverse N-gram models tend to be com-

plementary. That is, there is a significant subset of words which

only one of the two approaches produces correct pronunciation hy-

potheses. Not surprisingly, the forward N-gram approach tends to

be slightly better on average at predicting the ends of words, e.g. the

“x” (schwa) in “abide (/x b aI d/)” while the reverse N-gram model

tends to be more effective at predicting the beginnings of words, e.g.

the “aI” in “malign (/m x l aI n/)”.

A simple linear combination approach, described in Equation 4

was applied to the N-best results for the two model types, with

N = 5.

S C =
1

S R f
∗ S f +

1
S Rr
∗ S r (4)

Here the combined score for a pronunciation hypothesis, S C was

calculated as it’s inverse rank, denoted by subscript R, within its as-

sociated model, denoted by subscript f for forward and subscript r

for reverse. The inverse rank was then multiplied by the posterior

score attributed to the hypothesis by the pronunciation model, S f

and S r respectively. The scores for the pronunciation models were

not normalized. The pronunciation hypothesis with the best score

was then chosen as the answer.

Using this basic linear combination approach the overall WER

on the NETtalk-15k test set was further reduced 0.3% absolute, to

33.6%, which is also an improvement over the state-of-the-art joint

sequence approach reported in [5] for this dataset. We further note

that if only the correct pronunciation hypotheses from the Forward

and Reverse models are counted, the WER could potentially be fur-

ther reduced in the best case to 30.7%. Thus it is reasonable to sup-

pose we can further reduce WER by employing a more intelligent

approach to model combination.

6. Conclusion and Future work

In this work we introduced a new, modular open-source phoneti-

cizer, based on the WFST-framework. This G2P system performs

favorably in comparison to standard state-of-the-art results on many

standard test sets for this research domain. We showed that the

WFST paradigm provides for an easy means to rapidly test different

ideas, and for applying a G2P system to P2G problems as well. The

system is flexible and also supports not just one-to-one alignment

methods but also supports multiple-to-multiple alignments a key

feature which significantly improves performance on most larger

data sets.

In future we plan to extend it with larger array of native align-

ment implementations and modeling techniques. Preliminary com-

bination experiments showed that there is a clear advantage to com-

bining Reverse and Forward N-gram models, and furthermore that

there is still significant room for improvement over our baseline lin-

ear combination model. This implies that the method still has fur-

ther applications. We also note that it should be applicable to accent

prediction in Japanese and plan to investigate this in future.
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