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Abstract

Recently, an invariant structure of speech was proposed, where
the inevitable acoustic variations caused by non-linguistic fac-
tors are effectively removed from speech. The invariant struc-
ture was applied to isolated word recognition and the experi-
mental results showed good performance. However, the pre-
vious method can’t apply to continuous speech recognition di-
rectly because there was no efficient decoding algorithm. In this
paper, we propose a method to leverage the invariant structure
in continuous digits recognition. We use a traditional HMM-
based Automatic Speech Recognition (ASR) system to get N-
best lists with phone alignments. Then we construct invariant
structures using these phone alignments and re-rank the N-
best lists by investigating which hypothesis is structurally more
valid. Experimental results show a relative WER improvement
of 17.4% over the baseline HMM-based ASR system.

Index Terms: Invariant Structure, Continuous Digits Recogni-
tion, IV-best re-ranking

1. Introduction

The speech signal inevitably varies according to non-linguistic
factors, such as age, gender, microphone, background noise,
and so on. These non-linguistic variations often make Auto-
matic Speech Recognition (ASR) challenging.

Recently, an invariant structure of speech was proposed
where the inevitable acoustic variations caused by nonlinguis-
tic factors are effectively removed from speech [1]. In contrast
to classical speech processing, invariant structures make use of
f-divergence to model only the contrastive aspects of speech
and discard the absolute features completely. This approach has
been applied to isolated word recognition [2, 3], pronunciation
assessment [4], and so on. The experimental results showed
robustness and good performance on these tasks.

However, an invariant structure has not been used for con-
tinuous speech recognition because there was no efficient de-
coding algorithm. A decoding algorithm aligns a feature se-
quence with a hypothesis. But, to get an invariant structure,
we need a phone alignment. Thus it is difficult to use in-
variant structures directly for decoding because of the inher-
ent dilemma. Although Hidden Structure Model (HSM) which
includes decoding algorithm was already proposed, HSM has
been used only for an artificial task because it is computation-
ally too intensive [5].

In this paper, we propose using an NN-best re-ranking
method [6] to leverage the invariant structure in continuous
speech recognition. This method is the first one to apply the
invariant structure to a real continuous speech recognition task.
First we use our traditional Hidden Markov Model (HMM)-
based ASR system [7] to get N-best lists with phone align-
ments. Next, we construct invariant structures from each N-
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best hypothesis. An invariant structure expresses the relation-
ship between phones and can be obtained from a phone align-
ment. Then we estimate a structure-based score by investigating
how valid each hypothesis is in terms of its structure. Finally,
we re-rank the N-best lists by combining the ASR score and the
structure-based score. This method uses a well-studied HMM-
based decoding algorithm for generating N-best lists and hence
can be applied to continuous speech recognition.

To confirm whether our proposed method works or not, we
conducted experiments with Japanese continuous digits recog-
nition. Experimental results show that the proposed method im-
proved WER by 17.4% relative over our baseline HMM-based
ASR system.

The rest of the paper is organized as follows. Section 2
describes the previous structure-based ASR method. Section 3
presents our proposed /N -best re-ranking method to leverage the
invariant structure in continuous speech recognition. Section 4
presents the experimental results in the continuous digits recog-
nition task. Finally, Section 5 concludes the paper and describes
future directions.

2. Invariant Structure
2.1. Theory of invariant structure

Voices of two speakers show different timbre because they have
different vocal tract lengths and shapes. In studies of voice
conversion, speaker difference is often modeled mathematically
as an invertible transformation in the cepstrum domain. Es-
pecially, vocal tract length difference can be modeled well by
monotonic frequency warping in the spectral domain, which
can be converted into a linear transformation in the cepstrum
domain. These facts indicate that some transform-invariant fea-
tures can be robust features.

Consider a feature space X and a pattern S in X . Suppose
S can be decomposed into M events {sl}fil Each event is
described as a distribution s;(x) in the feature space. Assume
there is an invertible transformation f : X — X’ which trans-
forms X into a new feature space X’. In this way, a pattern
S in X is mapped to a pattern S’ in X’ and event s; is trans-
formed to event s;. Here, what we want is invariant metrics in
both spaces X and X'. Fig. 1 depicts an intuitive image.

f-divergence between two distributions is invariant with
any kind of invertible and differentiable transform [8]. Many
well known distances and divergences in statistics and informa-
tion theory can be seen as special examples of f-divergence.
For example, well-known Bhattacharyya distance (BD) and
Kullback-Leibler divergence are kinds of f-divergence.

Fig. 1 shows two invariant structures composed only of f-
divergences. With multiple events, we can obtain a structure by
calculating f-divergences between any pair of them. For exam-
ple, a structure composed of f-divergences between states of
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Figure 1: Invariant structures. The structure doesn’t change by
the invertible transformation f and f~'. (f-divergence is ab-
breviated as f-div.)
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Figure 2: An invariant structure can be represented as a distance
matrix and a structure vector.

speaker-dependent phone HMMs can be speaker-independent.
Since f-divergence is invariant to any invertible transformation,
the obtained structure is robust to speaker difference and any
other distortions which can be expressed by an invertible trans-
formation of the feature space (e.g. microphone difference).

2.2. Structure-based isolated word recognition

The invariant structure has been applied to isolated word
recognition and the experimental results showed good perfor-
mance [2, 3]. In this section, we explain how we used the in-
variant structure for isolated word recognition.

To begin with, we define the elements of the invariant struc-
ture (Fig.2). An invariant structure in the left consists of M
nodes. We denote individual nodes as {s;}2,. Each node cor-
responds to a speech event (e.g. a phone or a state of an HMM)
and is expressed as a distribution in a feature space. We denote
individual edges as {e;;} where 1 < ¢ < M andi < j < M.
Each edge is the f-divergence between two distributions of
nodes. An invariant structure can be represented as a distance
matrix in the middle. If we use a symmetric distance measure
such as BD, the upper-triangle elements of this distance ma-
trix is sufficient to represent the distance matrix. We extract the
upper-triangle elements as a feature vector and call it a structure
vector in the right. The dimensions of a structure vector of M
nodes is calculated as M (M — 1)/2.

The framework of structure-based isolated word recogni-
tion is shown in Fig.3. First of all, we need to define nodes
of a structure. We use distributions of states of HMM as the
nodes. The left side of the figure shows the procedure to extract
a structure vector from an input utterance. First, a cepstrum
vector sequence is obtained from an input isolated utterance by
acoustic analysis. Then, to convert the vector sequence to a
distribution sequence, a left-to-right HMM is trained with this
single cepstrum vector sequence. Here, its transition probabili-
ties are omitted. Since all the distributions have to be estimated
from a single utterance, the maximum a posteriori (MAP)-based
estimation is adopted. Next, we divide a distribution sequence
into several sub-streams according to the dimension of cepstrum
features [2]. After that, we calculate a distance matrix for each
sub-stream. This method is called multi-stream structuraliza-
tion. Geometrically speaking, this method is equivalent to de-
composing the feature space into several sub-spaces and con-
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Figure 3: Framework of the structure-based isolated word
recognition [2].

structing an invariant structure in each sub-space. Multi-stream
structuralization is effective for reducing excessive invariance in
an invariant structure and for finding a rich representation which
provides sufficiently discriminative information for classifica-
tion [2]. Finally, all the upper-triangle elements of the multiple
distance matrices are used as a structure vector. Here, a dimen-
sion of the structure vector increases by a factor of the number
of sub-streams.

Right side of the Fig. 3 shows an acoustic model using the
invariant structure. We call it a statistical structure model. We
denote the number of words as /. We prepare the structure
model for each of the K word independently. First, training
samples of each word were converted into structure vectors.
Here, we use the same topology of a structure, meaning that
the nodes of a structure and the dimension of a structure are the
same for all words. Then we estimate Gaussians from struc-
ture vectors of each word. These Gaussians of the structure
vectors are used as statistical structure models. Similarity be-
tween an input structure vector and a statistical structure model
is calculated as a log likelihood. The statistical structure model
showing the maximum log likelihood is the result of recogni-
tion. There are several alternatives for statistical structure mod-
els. For example, [3] proposed a eigen-structure method based
on discriminant analysis.

2.3. Limitation of the previous method

The previous method fixed the number of phones appearing in
the utterance to M. In other words, only isolated words con-
sisting of M phones were considered. In continuous speech
recognition, multiple words appear in the same utterance and
the previous method can’t be applied. To overcome this limi-
tation, we need some decoding algorithm. However, it is diffi-
cult to use invariant structures for decoding directly because we
need phone alignments to get the invariant structure, but phone
alignment will be obtained by the decoding.

A possible solution is using HSM [5]. In the framework of
HSM-based ASR, a cepstrum vector sequence is first converted
to a distribution sequence. HSM provides algorithms for state
inference, probability calculation, and parameter estimation for
distribution sequences. However, HSM has been used only for
an artificial and small task because these algorithms are compu-
tationally too intensive.

There is yet another limitation. The previous method needs
training samples for each word to build a statistical structure
model for each word. However, preparing training samples for
every word is difficult when the vocabulary size becomes huge.
More generic units that are smaller than words are preferable.
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3. Proposed Method

To overcome the limitation of the previous methods, we pro-
pose to leverage the invariant structure when re-ranking N-best
lists generated by an HMM-based ASR system. This method
is the first one to apply the invariant structure to a real con-
tinuous speech recognition task. The key idea is that we can
obtain the appropriate invariant structure from the training data
in advance. For a testing utterance the invariant structure ob-
tained from the correct hypothesis should be close to the in-
variant structure from the training data. On the other hand, the
structure from the wrong hypothesis should be distorted and dif-
ferent from the structure from the training data.

The framework of our proposed method is shown in Fig. 4.
Note that the numbers in Fig. 4 correspond to those of the fol-
lowing subsections.

3.1. HMM-based ASR

We use a traditional HMM-based ASR system to get N-best
lists. We can also get the ASR score and the phone alignment
for each hypothesis.

3.2. Extract an invariant structure

We extract the invariant structure for each /N-best hypothesis
using the phone alignment. Fig.5 shows a procedure of ex-
tracting an invariant structure from a feature vector sequence
and a phone alignment. First we estimate a distribution for
each phone from the feature vector sequences aligned with this
phone. Then we extract an invariant structure by calculating
f-divergences between each pair of distributions.

3.3. Calculate a structure score

By investigating whether an invariant structure for each hypoth-
esis is appropriate or not, we can select a correct hypothesis
from among N-best lists. Concretely, we can use the log like-
lihood of a statistical structure model for selecting the correct
hypothesis.

995

Hypothesized structure of [rein ]
1

Training data; ~ Statistical 7 |
i edge model en(r-e)
. < v en(r-i)
[fain] ;
en (fa), i e (r-n)
e (f-1) alc e-i
o (E)\ Cale. LL (e-i)
e (a-i)\\l [ SEMofrny------nq-meenee Cale. LL
e (a-n)\} :
e Ei—n) N/ [ty T 63431 ™)
[ran] DAY icicichocd IR A I
€12 (r-a). /i\\\\[i SEM Of i-nfrsmssfonsrmnrmmunnaponanndennnann )l Calc. LL
e (r-n)/\ i
e (a-n) °
[ ] ®
L4 Pe °
° . Calculate a structure score |
<
,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6: Process for building statistical edge models (SEMs)
and process for calculating log likelihoods using SEMs. Log
likelihood is abbreviated as LL.

In the previous method, a Gaussian of structure vectors for
each word was used as a statistical structure model. However,
we can’t prepare the statistical structure models for each word
if the vocabulary size becomes huge.

To solve this problem, we use edge-level models [9]. We
make a statistical model for each pair of phones. We call it a
statistical edge model (SEM). The left side of Fig. 6 shows a
process of building SEMs from the training data. The right side
depicts how we calculate the log likelihoods for the hypothesis
of the test data using the SEMs. Using edge length data of each
phone pair in the training data, we train an SEM of the phone
pair as a Gaussian or a Gaussian mixture model (GMM). Sup-
pose there are P phones, we make P(P — 1)/2 SEMs. Once
SEMs are built, we can calculate log likelihoods for each edge
e;; of any hypothesized structure independently.

Note that all edges in one word are modeled simultaneously
in the previous isolated word recognition. In the SEM, edges
are extracted from one utterance. But, each kind of edges are
modeled and used independently.

The following formula shows a structure score for the n-th

hypothesis h":
) Z?ﬂ ZQﬂ‘H Lij(e)
SCOICstructure (hn) - — Jio

where L;;(e7;) is alog likelihood of the edge obtained from the
n-th hypothesis to the corresponding SEM and O is the number
of phones appearing in the n-th hypothesis.

)]

3.4. Re-ranking

We re-rank the the N-best lists combining the ASR score and
the structure score with an appropriate weight. The final score
of the n-th hypothesis A" is calculated using the following for-
mula:

SCOICproposed (hn ) = SCOICASR (hn ) + W SCOr€syructure (hn )

@

where w is a weight for the structure score and determined ex-
perimentally.

This method uses a well-studied HMM-based decoding al-
gorithm for generating IN-best lists with phone alignments.
Hence it can be applied to continuous speech recognition. Fur-
thermore, our proposed method has the potential to improve the
performance because an invariant structure expresses the rela-
tionship between phones in a given utterance that the HMM-
based system doesn’t take into consideration well.



4. Experiments
4.1. Experimental setup

We conducted experiments in continuous digits recognition in
Japanese. We used our conventional HMM-based ASR system
to generate N-best lists with phone alignments [7]. We trained
an acoustic model (AM) of phones for continuous digits utter-
ances. The training data consists of 27.5 hours of utterances
from 667 speakers. Each utterance has 1 to 11 continuous digits.
The AM contains 18 phones and these phones are represented
as context-dependent, 3-state, left-to-right HMMs. The HMM
states are clustered by using a phonetic decision tree. The num-
ber of states and Gaussians are 500 and 15,000. For decoding,
we used a unigram language model that outputs 10 digits (0 to
9) and the end of sentence symbol with equal probabilities.

Next, we build SEMs. The training data for SEMs con-
sists of 2.5 hours of utterances from 67 speakers, which is
a subset of the data for HMM training. A unit of nodes is
context-independent 18 monophones. Consequently, the num-
ber of SEMs is 18 choose 2 combinational: 136. First we con-
duct forced alignment on the training data and get the phone
alignments. To estimate distributions of the phones, we used
13-dimensional PLP feature sequences which were aligned to
the middle state of the corresponding HMM. We assume that a
distribution is a Gaussian and the mean of the Gaussian is esti-
mated in a maximum likelihood (ML) manner. For variance, we
use the common variance for each phone. As we estimate dis-
tributions for the phones independently for each utterance, PLP
feature vectors aligned to each phone are limited and the esti-
mation of the variance is unstable. The common variance is es-
timated in an ML manner using all of the training data for each
phone. Then we calculate f-divergence and extract a multi-
stream invariant structure for each utterance [2]. Here, we use
VBD as a f-divergence as used in [3]. For the multi-stream
structuralization, we divide the 13-dimentional feature vectors
into 12 multiple sub-streams as used in [3]. Consequently, the
dimension of SEMs is 12. We assume that an SEM can be rep-
resented as a GMM and estimate parameters of the GMM using
training data. The number of mixtures of Gaussians was set to
1,2,4,8, 16.

Finally, we calculate the structure score and re-rank the /V-
best lists. We used test data that had at least 2 hypotheses. The
total amount was 1.0 hour consisting of 95 speakers. Using an
alignment for each hypothesis, we extract a structure for each
hypothesis in a similar way as training data. Then we calcu-
lated a structure score using equation (1) for each hypothesis
and combined the structure score with the HMM-based ASR
score using equation (2). We determined the weight w using
1-person-leave-out 95-fold cross validation.

4.2. Results

Fig. 7 shows the word error rate (WER) for the test data. It also
shows the baseline performance obtained by our HMM-based
ASR and N-best oracle. The proposed method outperformed
the baseline with all number of mixtures of Gaussians. When
we use 4 mixtures, we achieved the WER of 1.17% that is rel-
ative 17.4% improvement from the baseline WER of 1.38%.
Considering that the N-best oracle WER was 0.87%, our pro-
posed method achieved 41.2% error reduction.

Theoretically speaking, the edges are invariant with regard
to speaker change and hence a complexity of SEMs should be
very small. However, the highest performance was achieved
by 4 mixtures, not 1 mixture. Since we only use a context-
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independent monophone instead of the context-dependent mod-
els like a triphone, we consider that SEMs needed to model the
context information.

5. Conclusion

In this paper, we propose edge-level structure modeling and
an N-best re-ranking method to leverage an invariant structure.
The proposed method is the first one to apply an invariant struc-
ture to a real continous digits recognition task. Experimental
results show that a relative WER improvement of 17.4% over a
baseline ASR system was achieved.

For future work, we’re going to change the HMMs to so-
phisticated models such as discriminatively trained and adapted
models. Using the sophisticated HMM, we can get more precise
phone alignments and hence more accurate invariant structures
can be obtained. Since an invariant structure uses contrastive
aspects of speech which aren’t used in HMM-based ASR sys-
tem effectively, our proposed method has potential to improve
the performance of the more sophisticated HMM-based sys-
tem. Additionally, we're going to apply the proposed method
to Large Vocabulary Continuous Speech Recognition (LVCSR).
Using a generic edge-level structure model instead of a word-
level model can be of help in LVCSR.
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