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Abstract
The GMM based mapping techniques proved to be an effi-
cient method to find nonlinear regression function between two
spaces, and found success in voice conversion. In these meth-
ods, a linear transformation is estimated for each Guassian com-
ponent, and the final conversion function is a weighted summa-
tion of all linear transformations. These linear transformations
fit well for the samples near to the center of at least one Guas-
sian component, but may not deal well with the samples far
from the centers of all Gaussian distributions. To overcome this
problem, this paper proposes Bag of Gaussian Model (BGM).
BGM model consists of two types of Gaussian distributions,
namely basic and complex distributions. Compared with clas-
sical GMM, BGM is adaptive for samples. That is for a sam-
ple, BGM can select a set of Guassian distributions which fit
the sample best. We develop a data-driven method to construct
BGM model and show how to estimate regression function with
BGM. We carry out experiment on voice conversion tasks. The
experimental results exhibit the usefulness of BGM based meth-
ods.
Index Terms: GMM, bag of Gaussian model, voice conversion,
linear regression.

1. Introduction
Gaussian Mixture Model is a popular probabilistic model for
representing the presence of sub-populations within an overall
population. Mathematically, GMM is a weighted summation
of Gaussian functions whose means and covariances are differ-
ent. The parameters of GMM can be estimated by Expectation
Maximization (EM) algorithm. GMM can be seen as a soft clus-
tering method, where each Gaussian component corresponds to
a cluster and the posterior probability denotes the degree of a
sample belonging to a Gaussian component.

Among its many success, GMM has been used to design a
mapping function between two spaces. This technique has been
widely used for woice conversion (VC) [1, 2, 3, 4]. VC aims
at transforming a speaker’s voice to make it sound like another
speaker’s without changing the linguistic contents. These re-
searches made use of GMM to model the densities of source
cepstral vectors [2] or joint cepstral vectors [1]. The mapping
function is a weighted summation of linear transformations for
each Gaussian component while the weights are calculated as
posterior probabilities of source vectors. The parameters of the
linear transformations are estimated by minimizing the conver-
sion errors. The efficiency of GMM-based mapping and its
advantage to other spectral conversion methods such as map-
ping codebooks[1] and artificial neural network [5], have been

demonstrated in many previous studies [2, 1, 3, 6]. In a previous
work, we proposed a method called mixture of probabilistic lin-
ear regressions (MPLR) which unifies the GMM based mapping
techniques.

One key advantage of GMM based conversion technique
comes from its mixture nature. In the training phase, a local
linear regression is estimated for each cluster (Gaussian). In
the conversion phase, the converted vector is calculated as a
weighted summation of the transformed vectors from each lin-
ear regressions. And the weights are determined as the posterior
probabilities of input vector being generated by different Gaus-
sian components. This process allows it to deal with the non-
linear regression between two spaces. We found in experiments
that the posterior probabilities are always sparse, thus only one
linear regression has a large weight in conversion usually.

However, the GMM based mapping techniques has a lim-
itation. The linear regressions are estimated locally for each
Gaussian component, respectively. It may work well for the
samples near to the mean (center) of Gaussian, but may not fit
the samples far from the centers of all Gaussian components.
For each sample to be converted, we hope there exists a Gaus-
sian component in GMM whose center is near to the sample.
This fact cannot be satisfied by normal GMM. Once a GMM is
trained, the number of Gaussian components and their parame-
ters are fixed. There always exist samples which cannot be cov-
ered well by GMM. To overcome this problem, this paper intro-
duced the Bag of Gaussian Model (BGM). BGM is built from
GMM, and consists of Guassian distributions. Unlike GMM,
BGM includes two types of Guassian distributions. The first is
called basic distributions which are the same as those in GMM.
The second is called complex distributions which are summa-
rization of a subset of basic distributions. We introduce a data
driven method to estimate the weight and parameters of new
Guassian distributions, and show how to construct the mapping
function for BGM. To examine the performance of the proposed
method, we carried out voice conversion experiments with a
ATR-503 corpus. The results indicate the usefulness of BGM-
based methods.

2. GMM based statistical mapping
techniques

This section will give a review of the GMM based statistical
mapping techniques, which has been widely used in voice con-
version. The GMM based mapping technique was originally
proposed by Stylianou et al [2]. In [3], Kain et al introduced
GMM of joint vectors for this problem, where the transforma-
tion parameters can be directly calculated from GMM parame-
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ters. After that, many methods have been developed to improve
the performance of GMM based mapping techniques. Toda
[4, 6] introduced dynamic features to improve the naturalness
of speech, and made use of global variance to deal with the over
smooth problem. In a previous work [7], we developed a frame-
work called ‘mixture of probabilistic linear regressions’ to unify
the GMM based mapping techniques.

The key problem in voice conversion is to determine a map-
ping function y = f(x) from source speaker’s acoustic vec-
tor x to target speaker’s acoustic vector y. Linear regression
is popular for such problems due to its simplicity and effi-
ciency. However, many real problems include nonlinear trans-
formations which cannot be approximated well by a linear one.
The intrinsic idea behind GMM based mapping techniques is
to divide the feature space into several components (each cor-
responds to a Gaussian) in a probabilistic and soft way, and es-
timate a local linear transformation for each Gaussian compo-
nent.

Consider the feature space can be divided into K ‘virtual
spaces’ {Sk}K

k=1. Each Sk has the same region as the source
feature space, but has different density model of x, denoted by
p(x|Sk) or p(x|k) for short. These densities {p(x|k)} yield
information for ‘soft’ division. Then we estimate a linear re-
gressions y = Bkx + b for Sk. For simplicity, let x̂ = [x>1]>.
We can rewrite Bkx + b = Akx̂. The final regression function
is a weighted combination of all linear regressions,

y′ = fGMM(x) =

K∑

k=1

p(k|x)Akx̂. (1)

Posterior probability p(k|x) can be calculated with the Bayes’
theorem,

p(k|x) =
wkp(x|k)∑
j wjp(x|j) , (2)

where wk = p(Sk) denotes a prior probability of the k-th PLR
or Sk, and

∑
k wk = 1. It is noted that conversion with Eq.

1 is different from the Mixtures of Linear Regression models
(Chapter 14.5 [8]), where the weights are fixed for all training
samples.

GMM parameters p(x|k) and p(k) can be obtained by EM
algorithm. In the next, we discuss how to estimate the transfor-
mation matrix Ak in Eq. 1. Suppose we have a set of training
data set {xi, yi}I

i=1, where I is the number of training sample.
For convenience, let pi,k = p(xi|k) and γi,k = p(k|xi). Define
matrix Rk with diagonal as diag(Rk) = [γ1,k, γ2,k, ..., γI,k].

The MSSE estimation of Eq. 1 is given by,

arg min
{Ak}

∑
i

‖yi − fGMM(xi)‖2

=
∑

i

‖yi −
∑

k

γi,kAkx̂i‖2

=
∑

i

‖
∑

k

γi,k(yi −Akx̂i)‖2, (3)

where
∑

k γi,k = 1. This is a linear optimization
problem which can be solved directly. Let X̂k =

[γ1,kx̂1, γ2,kx̂2, ..., γI,kx̂I ] and X̂ = [X̂>
1 , X̂>

2 , ..., X̂>
K ]>.

The optimal transform matrices {A∗k} for Eq. 3 are given by

[A∗1, A
∗
2, ..., A

∗
K ] = Y X̂>(X̂X̂>)−1. (4)

…p1 p2
p3 pKpK-1

…

Basic Gaussian

Complex Gaussian

Figure 1: Bag of Gaussian Model.

However, this is computationally expensive, since matrix X̂ has
a size K(d + 1) × I , where d is the dimension of x. Here
we consider a fast and approximate calculation by decompos-
ing Eq. 3. Remind

∑
k γi,k = 1 and γi,k > 0. Accord-

ing to Jensen’s inequality, we have |∑k γi,k(yi − Akx̂i)|2 ≤∑
i γi,k|yi −Akx̂i|2. Therefore Eq. 3 can be approximated by

the following upper bound,

arg min
{Ak}

∑

k

∑
i

γi,k‖yi −Akx̂i‖2. (5)

This can be further decomposed into K linear optimization
problems, arg minAk

∑
i γi,k‖yi −Akx̂i‖2.

3. Bag of Gaussian model
In GMM based conversion techniques, a linear transformation
Akx̂ is estimated for each Gaussian component. In the train-
ing phase, the samples that are near to the mean of k-th Gaus-
sian component have higher posterior probabilities p(k|xi) and
thus are more important in Eq. 3 and Eq. 5 than those with
lower posterior probabilities. For this reason, in the testing
phase, samples near to the means of Gaussian components will
have better conversion performance, while samples far from the
Gaussian means will not.

Perhaps one idea to this problem is to increase the mixture
number in GMM thus more samples will be covered precisely
by Gaussian components. But large mixture number leads to
smaller variance (or covariance), and makes training and con-
version unstable. Experiments have shown that very large mix-
ture number can harm conversion performance too. Ideally, we
hope a large number of Gaussian distributions which cover the
feature space densely and whose variance (or covariance) are
relatively large. These two constraints cannot be achieved to-
gether by classical GMMs.

This paper introduces the Bag of Gaussian Model (BGM)
to deal with the problem discussed above. Like GMM, BGM
is composed by a number of Gaussian distributions and their
weights. Unlike GMM, there are two types of Gaussian distri-
butions in BGM, basic distributions and complex distributions.
Basic distributions are the same as those in GMM, while com-
plex distributions are summarization of a subset of basic distri-
butions (Fig. 1). The number of complex distributions is flexi-
ble. One can design different complex distributions for different
applications. Since complex distributions summarize the basic
ones, they are generally stable. In the reminder of this section,
we will discuss how to build BGM at first. Then we will show
how use BGM for conversion.

3.1. Construction of Bag of Gaussian Model

Bag of Gaussian Model consists of basic and complex Gaus-
sian distributions, together their weights. The diagram of BGM
is shown in Fig. 1. Let P = {p1, p2, ..., pK} denote the set
of basic Gaussian distributions, Q = {pK+1, pK+2, ..., pM}
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Figure 2: Soft conversion with Bag of Gaussian Model.

the set of complex Gaussian distributions, and W =
{w1, w2, ..., wM} the set of weights. Suppose we have a set of
training data X = [x1, x2, ..., xI ]. Distributions in P and their
associated weights are obtained by EM algorithm for GMM. In
the next, we show how to learn the distributions Q and their
associated weights.

Each complex distribution pm (K + 1 ≤ m ≤ M ) in Q
is a summarization of several basic distributions. Let Sm =
{pm

1 , pm
2 , ..., pm

K′} be the set of distributions which should be
merged to pm. Here we have two basic questions: 1) how to
determine merge sets {Sm}, and 2) how to calculate the param-
eters of new merged distribution pm and its weight wm.

The answer to the first question is flexible, and depends on
the applications to which BGM is applied. In this study, we use
a simple approach. For each pi ∈ P , we find its first n nearest
neighbors with the minimum KL-divergence,

KL(pi, pj) =

1

2
(log

|Σj |
|Σi| + tr(Σ−1

j Σi) + (µj − µi)
>Σ−1

j (µj − µi)), (6)

where pi(x) = N(x|µi, Σi) and pj(x) = N(x|µj , Σj). Then
we take pi and each of its neighbors pj to construct one merge
set Sm = {pi, pj}. Note a basic distributions can be merged
into more than one complex distributions.

We solved the second question in a data-driven manner. At
first for each training data xi and basic distribution pk(x), we
calculate the posterior probability as γk,i = p(k|xi).

Given Sm, weight wm for complex distribution pm can be
calculated by

wm =
∑

pk∈Sm

wk. (7)

Due to additive property of probabilities, we estimate the
posterior probability γm,i = p(m|xi) for complex distribution
as,

γm,i =
∑

pk∈Sm

γk,i =
∑

pk∈Sm

p(k|xi). (8)

With {γk,i}, we calculate mean µm and covariance Σm for pm

through maximum likelihood. The likelihood is defined as,

P (X|m, {γm,i}) =
∏

i

pm(xi)
γm,i . (9)

Maximizing the above equation leads to,

µm =
1∑

i γm,i

∑
i

γm,ixi, (10)

Σm =
1∑

i γm,i

∑
i

γm,i(xi − µm)(xi − µm)T . (11)

3.2. Conversion with BGM

In this section, we will discuss how to use Bag of Gaussian
model to estimate a mapping relation between x and y. Let
X = [x1, x2, ..., xI ] and Y = [y1, y2, ..., yI ] denote the train-
ing set. For the beginning, we estimate a linear transformation
y = Akx̂ for each distribution pk ∈ P

⋃
Q . Here, x̂ = [x; 1]

and Ak is d×(d+1) matrix. For sample xi and Guassian distri-
bution pk, we can estimate the posterior probability p(k|xi) by
Eq. 2 if pk is a basic distribution, or by Eq 8 if pk is a complex
one. Ak is obtained by minimizing the following error function,

arg min
Ak

∑
i

γk,i‖yi −Akx̂i‖2. (12)

The above equation can be solved directly [9]. The optimal Ak

is

Ak = Y ΓkX̂>(X̂ΓkX̂>)−1, (13)

where Γk is a diagonal matrix with diagonal part as
[γk,1, γk,2, ..., γk,N ], and X̂ = [x̂1, x̂2, ..., x̂n].

Now we consider how to transform a new sample x with
Bag of Gaussian Model. There are two ways: one is to chose
one Gaussian component for transformation (hard method), the
other is to use the weighted summation of the transformations
of all components (soft method). For a training sample x, we
can find the distribution which fits x best,

k∗x = arg max
k

p(k|x) = arg max
k

wkpk(x). (14)

In the hard method, we just transform x with the associated
linear transformation of k∗x-th distribution,

fhard(x) = Ak∗x x̂. (15)

The above hard mapping is in spirit similar to vector quantiza-
tion based conversion technique proposed in [1]. One difference
is that [1] used k-mean for clustering.

In the soft method, we consider a weighted summation of
transformation matrices. Introduce Vk∗x to denote the set of
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nodes which need to be considered in transformation. Vk∗x con-
sists of node k∗x-th distribution and the basic nodes not in Sk∗x ,

Vk∗x = {pk∗x

⋃
P/Sk∗x}, (16)

where P/Sk∗x means subtract Sk∗x from P . With Vk∗x , the soft
transformation is given by,

fsoft(x) =
∑

pk∈Vk∗x

p(k|x)Akx̂. (17)

If pk is a basic distribution, the transformation is the same as
those of GMM based conversion Eq. 1. If pk is a complex
distribution, we used pk∗x to replace the basic distributions sum-
marized by it in the transformation function. The diagram of
conversion with BGM is shown in Fig. 2.

4. Experiments
We carried out experiments to evaluate the performances of the
propose method on voice conversion task. We used the ATR-
503 phoneme balanced sentences. The data set used contains
503 utterances from a male speaker and another 503 utterances
from a female speaker. The sampling frequency is 16k Hz.
For each utterance, we calculated its 24-D cepstrum sequence.
We converted the female voice to the male voice. For conver-
sion, the training utterances of the source speaker and the target
speaker are aligned by dynamic time warping. We used 50 ut-
terances for training the conversion model, and another 40 ut-
terances for testing. The mixture numbers are set as 4, 8, 16,
24, 32, respectively.

We made comparison among the following four methods,
1) GMM based conversion, 2) GMM based hard conversion
1, 3)BGM based soft conversion (Eq. 16), and 4)BGM based
hard conversion (Eq. 15). The average cepstrum distortion
between target vector yt amd converted vector yc, CD[dB] =
10

ln 10

√
2

∑
d(yd

t − yd
c )2 is used for evaluation. The results are

shown in Fig. 3. It can be seen that GMM-based soft conver-
sion method outperforms the BGM based one when the mixture
number is very few i.e. 4. But generally, BGM based meth-
ods achieve lower cepstrum distortions than GMM based meth-
ods for other mixture numbers. Among all the methods com-
pared, BGM based soft conversion has the best performance. It
is noted that we use a simple approach to merge basic Gaus-
sian distributions with their two nearest neighbors for merge.
There may exist better methods to select Gaussian distributions
for merge, which can improve the performance.

5. Conclusions
This paper proposes the Bag of Gaussian Model (BGM) to es-
timate a mapping relation between two spaces. BGM is con-
structed from GMM. The basic distributions of BGM is the
same as those in GMM. But different from GMM, BGM also
includes complex distributions which are summarizations of ba-
sic distributions. We developed a method to calculate the pa-
rameters of complex distributions in a data driven manner. We
derive the linear transformation for each complex distribution

1GMM based hard conversion make uses of the linear transforma-
tion associated with the Gaussian component that has the largest pos-
terior probability. It has the same form as Eq. 16 of BGM based soft
conversion.
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Figure 3: Voice conversion results of GMM and BGM.

in BGM, and show how to use BGM for conversion. Spe-
cially, we develop two conversion methods, one is hard con-
version which selects one linear transformation associated with
the largest probability for conversion, and the other is soft con-
version which is a weighted summation of a set of linear trans-
formations. The posterior probabilities of a feature vector being
to a Gaussian component play important roles in our method.
BGM includes more Gaussian distributions compared with the
GMM it is built from. This leads to more linear transformations
to fit the area which has not been well fit by the linear transfor-
mations obtained from GMM. We executed experiments on the
Japanese ATR-503 corpus. The experimental results exhibited
that the BGM based conversion methods has better performance
on voice conversion. But the improvement is not significant. As
future work, we are going to explore how to use BGM on other
applications.
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