
Open-Source WFST tools for LVCSR
Cascade Construction

Josef R. Novak†, Nobuaki Minematsu†, and Keikichi Hirose†

†Graduate School of Information Science and Technology, The University of Tokyo,
Japan {novakj,mine,hirose}@gavo.t.u-tokyo.ac.jp

Abstract. This paper introduces the Transducersaurus toolkit which
provides a set of classes for generating each of the fundamental compo-
nents of a typical WFST-based ASR cascade, including HMM, Context-
dependency, Lexicon, and Grammar transducers, as well as an optional
silence class WFST. The toolkit further implements a small scripting lan-
guage in order to facilitate the construction of cascades via a variety of
popular combination and optimization methods and provides integrated
support for the T3 and Juicer WFST decoders, and both Sphinx and
HTK format acoustic models. New results for two standard WSJ tasks
are also provided, and the toolkit is used to compare a variety of construc-
tion and optimization algorithms. These results illustrate the flexibility
of the toolkit as well as the tradeoffs of various build algorithms.

Index Terms: Speech Recognition, WFST, LVCSR, Open-Source

1 Introduction

In recent years the Weighted Finite-State Transducer (WFST) paradigm has
gained considerable popularity as a platform for Automatic Speech Recognition
(ASR). The WFST approach provides an elegant, unified mathematical frame-
work that can be utilized to train, generate, combine and optimize the many
heterogenous knowledge sources that typically make up a modern Large Vocab-
ulary Continuous Speech Recognition (LVCSR) system. This has lead to the de-
velopment of several excellent general purpose software libraries devoted to the
construction and manipulation of WFSTs, including the popular open source
OpenFst C++ toolkit. Much research has also been conducted on the theoreti-
cal construction, integration and optimization of WFST models for ASR [1–5].
Nevertheless to our knowledge at present there is no open source toolkit devoted
to the construction of ASR-specific WFST models.

This lack of available tools represents an obstacle to the wider dissemina-
tion and adoption of WFST-based methods. In response to this, the current
work introduces the Transducersaurus WFST toolkit [6], which aims to provide
a unified, flexible and transparent approach to the construction of integrated
WFST-based ASR cascades, while incorporating recent research results on this
important topic. It includes a set of classes for constructing component mod-
els as well as a simple Domain Specific Language (DSL) suitable for specifying

2 WFST-based tools for LVCSR cascade development

cascade integration and optimization commands. It provides integrated support
for HTK [7] and Sphinx [8] acoustic models and cascade construction support
for both the T3 [9] and Juicer [10] WFST decoders. Where in past complicated
development was required, with this toolkit input knowledge sources and a sin-
gle command are sufficient to build a high-performance system. In addition to
introducing the toolkit, this work contributes new experimental results for two
LVCSR tasks from the Wall Street Journal [11] (WSJ) corpus, and provides
discussion of alternative cascade build chains.

The remainder of the paper is structured as follows. Section 2 describes the
main component models of a typical WFST-based ASR cascade. Section 3 de-
scribes the cascade integration tool and its capabilities. Section 4 describes new
experimental results that explore the flexibility of the Transducersaurus toolkit.
Section 5 provides additional analysis and explores the practical implications of
various construction techniques. Finally, Section 6 concludes the paper.

2 Integrated LVCSR Cascades

The construction of WFST-based cascades for LVCSR tasks typically involves
two major steps. The first step is to construct WFST-based representations of
each of the component knowledge sources, and the second step is to integrate
these components into either a single static cascade or, in the case of on-the-fly
composition a smaller subset of integrated models. The most common compo-
nent knowledge sources involved in the first step include a grammar G, in the
form of a statistical language model, a pronunciation lexicon L, that maps mono-
phone sequences to words, and a context-dependency transducer C,that maps
context-dependent triphone sequences to corresponding monophone sequences.
In addition to these three fundamental components, an HMM-level model H,
that maps HMM state sequences to context-dependent triphone sequences is
frequently utilized, and class-based silence models are also popular. The Trans-
ducersaurus toolkit provides integrated support for each of the H, C, L, G, and
T component transducers, and these components are described in detail in the
following subsections.

2.1 Grammar acceptor

The grammar component G, encodes information about word sequences, and
typically represents a standard ARPA format statistical N -gram model. Sev-
eral different approaches to transforming an N -gram model into an equiva-
lent Weighted Finite-State Acceptor (WFSA) have been proposed in the lit-
erature [12]. The simplest approach utilizes a single historyless back-off state,
and uses normal ϵ-transitions to encode back-off arcs and associated back-off
weights. This is the approach utilized currently in the Transducersaurus toolkit,
and a small example of such a model is depicted in Figure 1.
The use of normal ϵ-transitions however, can lead to situations where back-off
N -gram sequences may be less costly than the equivalent N -gram sequence.

WFST-based tools for LVCSR cascade development 3

Fig. 1. Detail of a bi-gram model for a sim-
ple two word LM.

Fig. 2. Example of a three-word lexicon
transducer, L.

Strictly speaking this is incorrect, and [12] discusses two strategies for dealing
with this problem. The first involves the use of special “failure” or ϕ-transitions
for the back-off arcs. These ϕ-transitions encode the idea that the back-off arc
should only be utilized in the event that an equivalent normal N -gram arc does
not exist. The second strategy involves mutating the baseline ϵ-back-off config-
uration, adding additional back-off states and manipulating the back-off arcs
so as to eliminate instances of path ambiguity. Transducersaurus utilizes the
ϵ-transition approach mainly for the sake of simplicity,but support for the al-
ternative strategies is planned for future work. The toolkit provides a python
program, arpa2fst.py which may be used to transform a standard ARPA for-
mat LM into an equivalent WFSA. The tool also generates symbol tables as
needed.

2.2 Lexicon transducer

The lexicon transducer L, maps monophone sequences or pronunciations to
words. An example of a trivial lexicon transducer is described in Figure 2. In
order to ensure that the lexicon can describe not just isolated words, but also
word sequences, it is necessary to perform the closure of the resulting WFST
prior to downstream composition. Furthermore, in order to handle the occur-
rence of homophones in the lexicon, it is necessary to augment the construction
with auxiliary symbols as described in [4]. If this step is not taken, the lexicon as
well as any downstream cascades may become non-determinizable. The toolkit
provides a lexicon generation tool in the form of lexicon2fst.py, and this tool
supports closure, and auxiliary symbol generation natively. lexicon2fst.py pro-
vides support for generating HTK as well as Sphinx format lexicons, the latter
of which typically utilizes positional triphones. The tool further generates nec-
essary symbol tables, a list of monophones, and a list of any auxiliary symbols
that are added during construction.

4 WFST-based tools for LVCSR cascade development

2.3 Context-dependency transducer

The Context-dependency WFST C, maps context-dependent triphone sequences
to corresponding context-independent monophone sequences. There are several
methods of building this component as well, which are described and illustrated
in detail in [4]. The Transducersaurus toolkit implements a deterministic con-
struction algorithm which results in a C transducer where the output sym-
bols are delayed. There are two separate tools for building the C transducer,
cd2wfstHTK.py and cd2wfstSphinx.py and as the names indicate, the first
tool provides native support for the HTK format acoustic models, and the second
provides native support for Sphinx format models. The C tools take as input
a list of monophones, an optional list of auxiliary symbols, and an optional
acoustic-model specific tied-list. The output consists of the text-format WFST
and associated symbol tables. Both tools also provide support for an additional
auxiliary WFST which can be used to replace auxiliary symbols or translate
logical triphones to physical triphones found in the input acoustic model. This is
important in situations where the user wishes to perform further optimizations
on a CLG or HCLG cascade.

2.4 Silence class transducer

As with most of the cascade components, there are several viable approaches
to handling silence in a WFST-based LVCSR cascade. The Transducersaurus
toolkit supports a special silence class transducer that can be utilized to trans-
form a grammar by augmenting it with silence or filler arcs. Other alternatives
include adding additional silence-trailing entries to the lexicon or utilizing forced-
alignment to insert silences into existing speech transcripts. In the latter case
the aligned transcripts can then be used directly to build an N -gram model with
silence tokens. In the toolkit, the silclass2fst.py program can be used to gen-
erate a silence class transducer from a list of words. An example of the silence
class transducer is depicted in Figure 3. Unlike the lexicon-based approach, the

Fig. 3. An N -word silence
class model, T.

Fig. 4. Example of a deterministic three-state HMM
model for the triphone a-b+c.

T approach permits long silences, and unlike the N -gram based approach, it

WFST-based tools for LVCSR cascade development 5

encodes the idea that silences may follow any word without a context-sensitive
penalty or boost. The trade-off between the silence loop and return ϵ-arc may be
specified by the user but the toolkit supplies default values that were estimated
from several hundred hours of spontaneous English conversation transcripts.

2.5 HMM level

The HMM-level transducer H, maps HMM state sequences from an acoustic
model to context-dependent triphones. The toolkit currently focuses on a 3-state
HMM configuration, although there are plans to extend this in future to more
flexible configurations. An example of a deterministic, three-state H WFST for
a single triphone, a-b+c is depicted in Figure 4. In practice the full H transducer
describes the closure of the union of all triphones and monophones in the acoustic
model. The structure is similar to the lexicon transducer, however the phonemes
are replaced with HMM states, the words are represented by monophone and tri-
phone labels, and the length of each entry is fixed to the number of HMM states
used to train the models. In most acoustic models such as those produced by
HTK and Sphinx, state-tying is used to share HMM states for under-represented
models. With the above approach this can lead to non-determinism due to some
triphones sharing the same underlying state sequences. This problem is handled
by Transducersaurus by adding a second level of auxiliary symbols to the H
transducer in order to guarantee determinizability. At present the H construc-
tion tool, hmm2wfst.py provides native support for Sphinx format mdef files,
as well as support for the native AT&T text format. Native support for the
HTK hmmdefs file format is also underway. Finally, the T3 decoder provides
online simulation of the HMM state self-loops, which eliminates the need to ex-
plicitly generate these during construction. Self-loop arc generation is however
supported as an option.

3 Cascade integration with Transducersaurus

In most cases it is necessary to first combine the individual models described in
the previous sections before they can be utilized for speech recognition. Much
work has been done in the past in regards to theoretically optimal cascade op-
timization and compression methods, for example [4] describes several effec-
tive composition and optimization schemes and the impact that these have on
WACC and decoding speed. Nevertheless the behavior of different construction
and optimization schemes can vary considerably based on the size and complex-
ity of the input models. The proposed toolkit provides a cascade integration
tool, transducersaurus.py the aim of which is to facilitate learning and speed
up the potentially tedious and time-consuming process of cascade generation.
This tool calls the individual model construction classes described in Section 2
and automatically performs all required generation, compilation, integration and
optimization algorithms. The tool further supports a wide selection of com-
mon features of WFST cascade generation including semiring selection, auxil-
iary symbol support, and fundamental WFST operations such as composition,

6 WFST-based tools for LVCSR cascade development

determinization, and minimization via the OpenFst library. The tool further
provides integrated support for both HTK and Sphinx acoustic models. The
flagship contribution of this toolkit however, is a simple WFST-oriented DSL
which aims to streamline the specification of build algorithms and optimization
procedures. This DSL is described in detail in the following section.

3.1 Cascade construction DSL

The DSL supported by the build tool allows the user to specify a build chain
using a subset of the standard FST-based combination and optimization algo-
rithms, as well as shorthand for the component models described earlier. The
user need only specify a simple chain for example,

--command "min(det(H*det(C*det(L*(G*T)))))",

--command "min(det(C*det(L*(G*T))))",

--command "(C*det(L)).(G*T)"

and the build tool will automatically tokenize and parse the command into the
appropriate series of OpenFst commands, generating intermediate results as nec-
essary along the way. At present the DSL is quite limited, but supports the min,
det, ◦ (specified “∗” on the command line) and “.” operations as well as the
construction of the H, C, L, G, and T component transducers. Here det refers
to determinization, min to minimization, “∗” to standard composition, and “.”
to Static Look-Ahead (SLA) composition, which was released in a recent ver-
sion of OpenFst, and which implements the Look-Ahead composition algorithm
proposed in [14]. Auxiliary symbol replacement is handled automatically in a
manner dependent on the set of build commands issued by the user.

The advantage of the DSL approach is that it permits very simple specifica-
tion of the build chain, which in turn encourages experimentation and learning,
and lends itself easily to further extension through the future addition of other
standard operations. Thus the user only needs to prepare the component knowl-
edge sources, and specify a build algorithm. For example the command,

$./transducersaurus.py --tiedlist tiedlist --hmmdefs hmmdefs

--grammar my.lm --lexicon my.lex --amtype htk --convert tj

--command "min(det(H*det((C*det(L)).(G*T))))"

will automatically construct an integrated recognition network utilizing a silence
class model, SLA composition and an HTK-format acoustic model, and output
an optimized HCLGT cascade suitable for use in both Juicer and T3.

4 Experiments

The proposed toolkit can be used to generate recognition networks for a variety
of different tasks and inputs. In order to showcase this flexibility, several different
experiments were carried out making use of different build chains and two test

WFST-based tools for LVCSR cascade development 7

sets from the WSJ corpus. A selection of recent results are reported for HTK
and Sphinx acoustic models and bot the Juicer and T3 decoder. These results
illustrate the correctness of the toolkit in reproducing previous baselines, and
also confirm separate results encouraging the SLA-based build chains.

4.1 Experimental setup

All experiments for this work were performed on an 8 core Intel Xeon based
machine running at 3GHz with a 6MB cache and 64GBs of main system memory
running the RHEL OS. As with our previous results from [13], the experiments
covered two popular tasks from the WSJ corpus. The first task, nov92-5k, focuses
on the November 1992 ARPA WSJ test set which comprises 330 sentences, and
was evaluated using the WSJ 5k non-verbalized vocabulary and the standard
WSJ 5k closed bigram language model. The second task, si dt s2-20k, focuses
on a subset of the WSJ1 Hub2 test set which comprises 207 sentences. The
si dt s2-20k task, which is somewhat more difficult, was evaluated using a 64k
vocabulary an a large 3-gram LM trained on 222M words from the CSR LM-1
corpus [15]. In order to help ensure the repeatability of our experiments, open
source Sphinx and HTK acoustic models described in [16] were used throughout,
and auxiliary parameter values for the T3 and Juicer decoders were specified as
in [13]. Unless otherwise specified the log semiring was used for all constructions.

4.2 Nov92-5k LVCSR Experiments

The first set of experiments focused on the standard WSJ Nov92-5k test set,
the default closed bigram language model and associated pronunciation lexicon.
Open source Sphinx format acoustic models were used. The toolkit was utilized
to generate six different cascades, which shared the same fundamental knowledge
sources but differed in terms of the optimization procedures applied, and whether
an H-level transducer utilized in the cascade. Recent work such as [17] as well
as our own recent experiments have shown that SLA composition, which omits
the det(LG) operation, yet performs equally well, thus SLA composition was
utilized in all six cascade constructions. The command used to generate these
cascades was specified as,

$./transducersaurus.py --tiedlist mdef --amtype sphinx

--grammar bcb05cnp-2g.arpa --lexicon bcb05cnp.dic --convert t

--base auto --prefix bcb05s --command "(C*det(L)).G"

and the value of the --command parameter was simply modified to generate each
of the six different variations. The properties of each of the resulting cascades
are described in detail in Table 1. The variation in terms of the number of arcs,
states and total size clearly indicates the relative effects of applying different
optimization operations to the construction process. The simplest construction,
(C◦det(L)).G results in the smallest cascade in this case. Subsequent application
of determinization increases the initial size of the cascade, while miniminization

8 WFST-based tools for LVCSR cascade development

Table 1. WSJ-based WFST cascade characteristics for Sphinx acoustic models. Here
min refers to minimization, det refers to determinization, the “◦” operator refers to
standard composition, and the “.” operator refers to static look-ahead composition.

Cascade constructions Arcs States Size
(C ◦ det(L)).G 1,828,710 620,711 36 MB
det((C ◦ det(L)).G) 3,588,184 726,782 64 MB
min(det((C ◦ det(L)).G)) 3,260,139 654,008 58 MB
det(H ◦ ((C ◦ det(L)).G)) 4,226,328 2,729,896 96 MB
det(H ◦ det((C ◦ det(L)).G)) 6,981,130 3,528,195 147 MB
min(det(H ◦ det((C ◦ det(L)).G))) 6,318,302 3,107,984 132 MB

again reduces the overall size. This pattern is repeated with the addition of the
HMM-level WFST. The set of Sphinx format cascades generated with the trans-
ducersaurus.py tool were subsequently evaluated inside of the T3 decoder and
the results of these evaluations are described in Figure 6. Although small in this

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

!" #" $!" $#" %!" %#"

!
"#

$%
&'
($
)*
+#

,-
$)

'.!
/0
'

12#"'.*"($)3*0'

!"#$%&'($)*+#,-$)'.!/0'4*5'12#"'.*"($)3*0'

()(!#"*+,-./0"

()(!#1)23"-4⚪./0"
()(!#15671)23"-4.8/0"

Fig. 5. Memory consumption versus time comparison of the det(LG) operation and
SLA versus standard composition for the bcb05 CLG cascade.

simple task, the effect of optimization techniques can nonetheless still be clearly
seen in the difference between the (C ◦ det(L)).G construction and the deter-
minized and minimized variants. In general the impact of these optimizations is
increased for larger and more complicated models. Nevertheless the gains are not
achieved without a cost. In particular each additional call to the determiniza-
tion and minimization algorithms consumes significant additional computing
resources and time. These requirements grow rapidly as the size and complexity
of the input models increases. Thus it is pragmatic to strike a balance between
development time, resource requirements and achievable RTF versus WACC. In
order to help illustrate this trade-off we also looked at the memory consumption
versus time characteristics of the det(LG) determinization operation, the stan-
dard C ◦(LG) composition, and the SLA composition, CL.G. The results for the
bcb05 cascade used to evaluate the Nov92-5k test set are depicted in Figure 5,

WFST-based tools for LVCSR cascade development 9

and unequivocally show that the determinization operation is by far the most
costly, but also indicate the advantages of SLA composition over the standard
variant.

4.3 si dt s2-20k LVCSR Experiments

The second set of experiments involved the si dt s2 test set, and a much larger 3-
gram language model based on the CSR corpus. These experiments were carried
out to show that the toolkit is a viable choice not just for small models, but can
be used in a straightforward manner to also build very large, efficient cascades.
This experiment also illustrates the ability of the toolkit to generate both HTK,
and Sphinx based recognition networks and to construct working cascades for
both Juicer and the T3 decoder. In this case experiments focused on a single
construction scheme; the simple yet effective (C ◦ det(L)).G and the commands
utilized to build the cascades were as follows,

$./transducersaurus.py --tiedlist mdef --amtype sphinx

--grammar lm_csr_64k_nvp_3gram.arpa --base auto

--lexicon lm_csr_64k_nvp_3g-sphinx.dic --prefix bcb05s

--convert t --command "(C*det(L)).G"

$./transducersaurus.py --tiedlist tiedlist --hmmdefs hmmdefs

--amtype htk --grammar lm_csr_64k_nvp_3gram.arpa --base auto

--lexicon lm_csr_64k_nvp_3gp-htk.dic --prefix csr64kh

--convert t --command "(C*det(L)).G"

and information regarding arc and state counts as well as overall size is described
in Table 2 while RTF versus WACC results for the three tests are illustrated in
Figure 7.

Table 2. CSR-based WFST cascade characteristics for HTK and Sphinx models. Both
cascades employed a (C ◦ det(L)).(G ◦ T) construction scheme.

Cascade Arcs States Size
CSR-64k-HTK 146,450,935 92,463,260 3.3GB
CSR-64k-Sphinx 143,814,641 88,823,730 3.2GB

5 Discussion

The results from the two experiments provide new empirical evidence support-
ing previous research results in this area. Results from Subsection 4.2 show that
the toolkit can be utilized to quickly and simply develop a variety of different
LVCSR cascades and that build results accurately and reliably reflect previously
reported findings. We note that the HCLG builds converge more slowly, but
achieve the same best WACC at approximately 2x real-time. The SLA composi-
tion algorithm is an improvement over standard composition [17], but the most

10 WFST-based tools for LVCSR cascade development

!"#

!$#

%"#

%$#

"# "&'# "&(# "&)# "&*# "&$# "&+#

!
"#
$%
&
''
(#
)'
*%
+,

-%

./)01234/%5)'6"#%

27(8/$%9:;3<=%7)>')$/>%?"#%@"ABCD%EF%2/>6%9/6%

,-./0⚪,-.//1⚪,-./233&433#

567/,-.//1⚪,-./233&433#

/1⚪,-./233&4#

,-./0⚪//1⚪,-./233&433#

,-.//1⚪,-./233&43#

Fig. 6. Cascade build comparison for the Nov92-5k task using the T3 and Sphinx
format acoustic models.

!"#

$"#

%"#

""#

&"#

'"#

("#

)#)*+#)*!#)*$#)*%#)*"#)*&#)*'#

!
"#
$%
&
''
(#
)'
*%
+,

-%

./)01234/%5)'6"#%

'7#89:173;$6;7<%=6)>'%?"":1&@/)$%ABC/#34/D67%
./)01234/%5)'6"#%E7F%!"#$%&''(#)'*%

,-./01#234#56⚬70859::*5;⚬3:#

36-<07#234#56⚬70859::*5;⚬3:#

36-<07#=>?.@A##56⚬70859::*5;⚬3:#

Fig. 7. Cross comparison for the si dt s2-20k task using the T3 and Juicer decoders,
Sphinx and HTK format acoustic models on the 3-gram CSR LM-1 language model.

WFST-based tools for LVCSR cascade development 11

substantial gains from the alternative (C ◦ det(L)).G build chain result from
the ability to avoid the otherwise costly det(LG) determinization operation in
a simple CLG construction. In the experiments described in Subsection 4.2, us-
ing SLA composition provided roughly a 50% memory savings, and an average
overall time savings of nearly 80%. The cross-comparison results described in
Subsection 4.3 replicate previous results from [13], this time utilizing the SLA
build. Notably, in this case the SLA build produces significantly smaller cas-
cades and furthermore the relative sizes of the Sphinx versus the HTK format
models is reversed. The latter result is likely a consequence of the positional
triphones utilized by the Sphinx models, which permit a smaller degree of shar-
ing, thus resulting in a larger increase in size following determinization in the
C ◦ det(L ◦ G) construction. The small performance variation among the AM
types and T3 versus Juicer again suggest that there is not much technical mo-
tivation to overtly favor any particular combination. Rather the availability of
resources and existing expertise should guide development choices.

Finally, the T3 decoder also supports GPU-based computation of acoustic
likelihood scores, and these results have been reported in several previous works.
We note however, that application of GPU-based acoustic scoring, when available
tends to provide the strongest single speedup, and that use of the more compu-
tationally intensive logsum operation versus the standard logmax also tends to
boost maximum accuracy. This implies that SLA composition, combined with
GPU-based acoustic scoring and a comparatively simple (C ◦ det(L)).G build
chain provides highly competitive results. This strikes a strong balance between
RTF, WACC, memory and storage requirements and overall build time. Further
savings in terms of memory requirements, storage and build time can be gained
from performing the lookahead composition on-the-fly at decoding time.

6 Conclusion and Future Work

In this work we have introduced Transducersaurus, a new open source software
toolkit for building and manipulating WFST-based ASR cascades. The toolkit
provides integrated support for the T3 and Juicer WFST decoders and both
HTK and Sphinx acoustic models, and supports construction of the H, C, L,
G, and T component WFSTs. We showed the effectiveness of the toolkit on a
variety of different tasks, looking at both construction variants on a simple set
of inputs, and performing a decoder and acoustic model cross comparison on a
much larger task. Furthermore we have provided a detailed explanation of the
SLA build process as it is supported by the toolkit along with its merits. The ASR
application development process is often iterative, and these results reinforce the
idea that by utilizing a simplified build chain and the SLA composition approach,
overall efficiency can be greatly improved at little or no cost to either the RTF
or WACC of a particular recognition network.

In future we plan to further expand the range of available operations, and
expand the current limited DSL build syntax, provide integrated support for
out-of-vocabulary words, and introduce parallel support for the AT&T fsmtools.

12 WFST-based tools for LVCSR cascade development

Experiments looking at a much wider variety of languages and model inputs
currently in the planning phase. Although the toolkit is still in the early stage
of development we hope that it will facilitate learning as well as more efficient
work in this area, and promote further discussion.

At present the Transducersaurus toolkit can be downloaded freely from the
location listed in [6], and is available under the terms of the liberal BSD license.

References

1. Mohri, M., “Finite-State Transducers in Language and Speech Processing,” in
Computational Linguistics, Vol. 23, Issue 2, 1997.

2. Mohri, M., Riley, M., “Network optimizations for large-vocabulary speech recog-
nition,” Speech Communication, Vol. 28, Issue 1, 1999.

3. Mohri, M., Pereira, F., Riley, M., “Weighted finite-state transducers in speech
recognition,” Computer Speech and Language, Vol. 16, Issue 1, 2002.

4. Allauzen, C., Mohri, M., Riley, M., Roark, B., “A Generalized Construction of
Integrated Speech Recognition Transducers,” in Proc. ICASSP, pp. 761-764, 2004.

5. Mohri, M., Pereira, F., Riley, M., “Speech recognition with weighted finite-state
transducers,” Springer Handbook of Speech Processing, pp. 1-31, 2008.

6. Novak, J., code.google.com/p/transducersaurus/
7. Young, S., Evermann, G., Kershaw, D., Moor, G., Odell, J., Ollason, D., Valtchev,

V., Woodland, P., “The HTK Book (for HTK Version 3.2),” Cambridge University
Engineering Department, 2006.

8. Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf, P., Woelfel,
J., “Sphinx-4: A flexible open source framework for speech recognition,” Sun Mi-
crosystems Technical Report, TR-2004-139, 2004.

9. Dixon, P., Caseiro, D., Oonishi, T., Furui, S., “The Titech Large Vocabulary WFST
Speech Recognition System,” in Proc. ASRU, pp. 1301-1304, 2007.

10. Moore, D., Dines, J., Magimai Doss, M., Vepa, O., Cheng, O., Hain, T., “Juicer:
A Weighted Finite State Transducer Speech Decoder,” in Proc. Interspeech, pp.
241-244, 2005.

11. Paul, D., B., Baker, J., M., “The Design for the Wall Street Journal-based CSR
Corpus,” in Proc. ICSLP 92, pp. 357-362, 1992.

12. Allauzen, C., Mohri, M., Roark, B., “Generalized Algorithms for Constructing
Language Models,” in Proc. ACL, pp.40-47, 2003.

13. Novak, J., Dixon, P., Furui, S., “An Empirical Comparison of the T3, Juicer, HDe-
code and Sphinx3 Decoders,” in Proc. InterSpeech 2010, pp. 1890-1893, 2010.

14. Allauzen, C., Riley, M., Schalkwyk, J., “A Generalized Composition Algorithm for
Weighted Finite-State Transducers,” InterSpeech 2009, pp. 1203-1206, 2009.

15. Doddington, G., “CSR Corpus Development, DARPA SLS Workshop,” pp. 363-
366, 1992.

16. Vertanen, K., “Baseline WSJ Acoustic Models for HTK and Sphinx: Training
Recipes and Recognition Experiments,” Cavendish Laboratory, University of Cam-
bridge, 2006.

17. Allauzen, C., Riley, “OpenFst: A General and Efficient Weighted Finite-State
Transducer Library,” tutorial, SLT 2010.

