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1 Introduction

This paper introduces an open source toolkit,
Transducersaurus [1], leveraging OpenFst [2] which
can be used to build WFST-based networks for
LVCSR tasks. The toolkit provides a set of classes
for generating each of the fundamental components
of a typical WFST ASR cascade, including HMM,
context-dependency, lexicon, language model and si-
lence class models. The toolkit further implements
a simple scripting language to facilitate cascade con-
struction with various optimization methods and
provides support for the T3 and Juicer WFST de-
coders as well as a new WFST decoder currently un-
der development at U. Tokyo, and both Sphinx and
HTK format acoustic models. Results for a standard
WSJ tasks are also provided. The results illustrate
the flexibility of the toolkit as well as the tradeoffs
inherent in various build algorithms.

2 WFST-based ASR Cascades

The Weighted Finite-State transducer (WFST)
approach to Automatic Speech Recognition (ASR)
has gained considerable popularity in recent
years [3]. The WFST approach provides a flexi-
ble, unified mathematical framework for rendering
each of the component knowledge sources typically
utilized to build an ASR system. An integrated
network is then produced by iteratively combining
and optimizing the component models. The most
straightforward and perhaps common construction
involves three component models. The Grammar
- G, typically takes the form of a statistical lan-
guage model. The Lexicon - L, encodes a pronunci-
ation dictionary which maps monophone sequences
to words. The Context-dependency transducer - C,
maps triphone sequences to monophones, thus en-
coding contextual information for longer sequences
of monophones or words. Each of these core com-
ponent transducers is supported by the Transducer-
saurus toolkit. The toolkit also includes an optional
class suitable for constructing a silence class model -
T as described in [4]. Finally the H model performs
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a mapping from HMM distributions to triphone se-
quences is often described in the literature. The
Transducersaurus toolkit provides individual pro-
grams suitable for constructing each of these com-
ponent transducers, as well as a unified integration
tool in the form of transducersaurus.py. For more
details on the structure, algorithms and complexity
associated with the component models please see [4].

2.1 Integration and Optimization

In order to utilize the component models in a
WFST-based decoder it is necessary to first in-
tegrate them into a unified recognition network.
This is typically achieved through iterative use of
composition. The un-modified result of composition
is, however not efficient, thus it is often necessary
to optimize the network through the use of tech-
niques such as determinization, minimization, and
weight − pushing. A simple three-component inte-
gration and optimization algorithm then might take
the form, C ◦ det(L ◦ G) where the ◦ symbol refers
to composition, and det refers to determinization.
Much more complex construction algorithms are
possible, however in general optimizations incur
costs in terms of construction time, memory and
storage requirements. It is important to strike a
reasonable balance between these competing inter-
ests and the toolkit provides a means to achieve this
with a minimum of overhead.

3 Cascade Integration with Trans-

ducersaurus

The toolkit provides an integration tool in the
form of transducersaurus.py, which allows the user
to provide a single cascade integration command fol-
lowing a simple DSL syntax, which will automate
the build process. In past this required manual in-
tegration via OpenFst, or custom build programs,
both of which are time consuming and error prone.
An example of a complete build command,

./transducersaurus.py --tiedlist tiedlist

--hmmdefs hmmdefs --grammar my.lm
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Fig. 1 SLA cascade build comparison for the
si dt s2-20k task using the T3 decoder and HTK
AM.

--lexicon my.lex --amtype htk

--command "(C*det(L)).G"

The above command will construct an integrated
cascade utilizing HTK acoustic models, and looka-
head composition as described in [7].

4 Experiments

Experiments were conducted comparing static
lookahead composition and standard composition.
The recognition task, si dt s2-20k, focused on the
WSJ1 Hub2 set comprising 207 sentences and uti-
lizes the standard WSJ 20k non-verbalized closed
bigram language model and corresponding vocab-
ulary. Open source acoustic models from [5] were
used, and parameters for the T3 and Juicer decoders
were specified as in [6]. Results for the experiment
are depicted in Fig. 1.

The SLA cascade construction from [7] has ad-
vantages even in static mode. First, the composi-
tion operation is both faster and more efficient in
terms of memory consumption. Second, in the case
where the full cascade is not optimized, omitting the
det(L◦G) operation, affords a substantial reduction
in maximum memory requirements. Furthermore,
if the decoder supports on-the-fly composition, the
precomputed (C ◦ det(L)) and G components may
be used directly for an even greater savings.

5 Conclusions and Future work

The SLA experiments further confirm the superi-
ority of the look-ahead composition algorithm, even
where static cascades are concerned. In the above

experiments the SLA approach resulted in an aver-
age memory savings of roughly 50%, and an average
overall time savings of nearly 80%. The SLA build
also benefited from use of the tropical semiring. This
is due to the fact that determinization of the un-
weighted L transducer in the log semiring produces
an undesirable re-weighting which negatively affects
the final cascade. This issue can be avoided either
by performing the entire build in the tropical semir-
ing or performing just the det(L) operation in the
tropical semiring. These experiments show the ba-
sic flexibility of the toolkit, but for more in-depth
discussion the reader is referred to [8].

In future we plan to further extend the toolkit to
support a wider range of optimization algorithms,
an d evaluate the SLA builds in an on-the-fly context
with the decoder currently under development.

参考文献
[1] Novak, J.,

code.google.com/p/transducersaurus/

[2] Allauzen, C., Riley, “OpenFst: A General and
Efficient Weighted Finite-State Transducer Li-
brary,” tutorial, SLT 2010.

[3] Mohri, M., “Finite-state transducers in language
and speech processing,” Computational Linguis-
tics, Vol. 23, 1997.

[4] Allauzen, C., Mohri, M., Riley, M., Roark,
B., “A Generalized Construction of Integrated
Speech Recognition Transducers,” in Proc.
ICASSP, pp. 761-764, 2004.

[5] Vertanen, K., “Baseline WSJ Acoustic Models
for HTK and Sphinx: Training Recipes and
Recognition Experiments,” Cavendish Labora-
tory, University of Cambridge, 2006.

[6] Novak, J., Dixon, P., Furui, S., “An Empiri-
cal Comparison of the T3, Juicer, HDecode and
Sphinx3 Decoders,” in Proc. InterSpeech 2010,
pp. 1890-1893, 2010.

[7] Allauzen, C., Riley, M., Schalkwyk, J., “A Gen-
eralized Composition Algorithm for Weighted
Finite-State Transducers,” InterSpeech 2009,
pp. 1203-1206, 2009.

[8] Novak, J., Minematsu, M., Hirose, K., “Painless
WFST cascade construction for LVCSR - Trans-
ducersaurus,” InterSpeech 2011, accepted.

- 226 -日本音響学会講演論文集 2011年9月


