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あらまし 話者変換の目的はある話者の声を別の話者の声に変換することである。これは二つの話者区間において音

声時系列のマッピング関数を求めることとして考えられる。GMMを用いた統計的マッピング方法 [1], [2]は話者変換

のタスクにおいてよく使われている。ただし、GMMを用いた変換技術はフレームからフレームへのマッピング関数を

使用しているので、音声時系列のコンテキスト情報が十分には使われていない。HMMは音声時系列の有効なモデル

であり、音声認識や音声合成においてよく使われている。本研究は HMMを用いた音声変換を研究対象とする。我々

は HMMを用いた回帰、シーケンスからフレームの変換関数を導出した。先行の HMMを用いた音声変換方法 [3]～

[5]は強制切り出し (forced alignment)によって音声を分割し、各区間に対して変換を行う。それらの方法と異なって，

我々の変換関数は線形変換の重みつけの和として導出される。重みは各フレームの HMM事後確率である。変換パラ

メータを推定するために、我々は最小２乗誤差基準及びと最大尤度基準を提案した。実験結果は提案手法の有効性を

示した。
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Abstract Voice conversion, a task to transform one speaker’s voice to another’s, can be regarded as a problem to

find a mapping function between voice spaces of two speakers. GMM-based statistical mapping methods [1], [2] have

been widely used for voice conversion. However, the classical GMM-based techniques make use of a frame-to-frame

mapping function, which largely ignores the contextual information existing over a speech sequence and usually

causes over-smoothness of converted speech. It is well known that HMM yields an efficient method to model the

density of a whole speech sequence and has found successes in speech recognition and synthesis. Inspired by this

fact, this paper studies how to use HMM for voice conversion. We derive an HMM-based sequence-to-frame mapping

function with statistical analysis. Different from previous HMM-based voice conversion methods [3]～[5] that used

forced alignment for segmentation and transform frames aligned to a state with its associated linear transforma-

tion, our method has a soft mapping function as a weighted summation of linear transformations. The weights are

calculated as the HMM posterior probabilities of frames. We also propose and compare two methods to learn the

parameters of our mapping functions, namely least square error estimation and maximum likelihood estimation.

We carried out experiments to examine the proposed HMM-based method for voice conversion.

Key words Voice conversion, linear regression, sequence-to-frame mapping, HMM

1. Introduction

Voice conversion (VC) [1], [2], [6], [7] is a task to transform a

speaker’s voice into the one that sounds like another speaker

while the linguistic contents are preserved. VC has many im-

portant applications and is receiving intensive attentions in
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the field of speech synthesis. Since utterances of two speak-

ers differ from each other in many aspects, such as speech

rate, duration, pitch, formant frequencies and speaking style

etc., the ideal VC technique should take account of all these

aspects. However, this is difficult in practice, some of these

features are difficult to calculate and some are difficult to

convert. For this reason, many VC techniques seek to use

a transformation function between the spectral spaces of

source and target speakers, and only conduct simple mod-

ifications for prosody features such as F0. We follow this

framework in this paper.

The GMM-based statistical mapping techniques proposed

by Stylianou et al. [1] and Kain [2] have been widely used to

convert spectral features between different speakers. These

techniques make use of GMM to model the densities of source

cepstral vectors [1] or joint cepstral vectors [6]. The mapping

function is a weighted summation of linear transformations

for each Gaussian component while the weights are calcu-

lated as posterior probabilities of source vectors. The param-

eters of the linear transformations are estimated by minimiz-

ing squared errors. The efficiency of GMM-based mapping

and its advantage to other spectral conversion methods such

as mapping codebooks and artificial neural network, have

been demonstrated in many previous studies [1], [2], [6], [7].

However, GMM only describes the density of frame vectors

and cannot take account of the contextual (dynamic) infor-

mation. Although one can incorporate delta or delta-delta

features into GMM, these features still only provide local dy-

namic information. On the other hand, HMM is a density

model for sequences and the transition probabilities of HMM

allow it to account for the dynamics in speech. This paper

studies an HMM-based mapping method for voice conver-

sion. We deduce the formulas for sequence-to-frame map-

ping based on HMM by using statistical analysis. We use

least square error (LSE) and maximum likelihood (ML) cri-

teria to estimate the parameters of the mapping function.

We find that the LSE estimation has a closed form solution,

while the ML estimation leads to a nonlinear optimization

problem. For this reason, we develop an EM-based algorithm

for the ML estimation of HMM-based mapping. We conduct

experiments to examine the performances of LSE estimation

and ML estimation for HMM-based voice conversion. The

results show the usefulness of the proposed method.

We notice that several studies tried to apply HMMs to

voice conversion [3]～[5]. In [3], Kim et al. introduced a

hidden Markov VQ model for voice conversion, where the

mapping function is determined by the codebook and the

optimal states of a source utterance. Different from this

method, we use normal HMMs and our mapping function

is a weighted summation of several linear transformations.

Duxans et al. [4] used HMMs to model the densities of source

vectors and joint vectors, and estimated a linear transforma-

tion for each state of an HMM to convert an input utterance.

In [5], Wu et al. proposed duration-embedded DeBi-HMM

for expressive voice conversion. Unlike the methods in [4]

and [5] where the mapping functions only depend on the op-

timal states obtained by forced alignment, our method has a

more strict statistical framework and the mapping function

is derived by combining the linear transformations of differ-

ent states using weights of posterior probabilities of states.

This ‘soft’ mapping function allows us to deal with the prob-

lem of spectral jumps at the boundaries of segments resulted

from forced alignment [3], [4].

2. HMM-based voice conversion

Voice conversion can be regarded as a problem to de-

termine a mapping function from an utterance of a source

speaker to that of a target speaker denoted by Y = F (X),

where F denotes the mapping function and X, Y represent

speech sequences of source and target speakers, respectively.

Let X = [x1, x2, ..., xT ] and Y = [y1, y2, ..., yT ′ ], where xt

(1 <= t <= T ) and yt (1 <= t <= T ′) represents d-dimensional

frame vectors. However, to find a direct mapping between

two sequences is very difficult, since a sequence usually con-

tains a large number of elements and the length of sequences

X and Y can be different. For this reason, many researchers

reduced the sequence mapping to a frame-to-frame conver-

sion problem, which is denoted by yt = f(xt). A popular

approach of this kind is to make use of the GMM-based sta-

tistical mapping, where GMM is used to model the density of

frame vectors [1] of a source speaker or joint vectors of source

and target speakers [2], and the final mapping function is the

weighted combination of linear transformations estimated for

each Gaussian component. In a recent study, we proposed

a method called Mixture of Probabilistic Linear Regressions

(MPLR) [8], which unifies the two GMM-based voice conver-

sion techniques [1], [2] and leads to a better method for esti-

mating mapping parameters. Although the frame-to-frame

mapping is simple, it only considers the current frame xt

for conversion and doesn’t take account of the contextual

(dynamic) information to derive a mapping function, which

plays a important role for speech perception.

GMM is a density model of frame vectors, and GMM-

based mapping is a frame-to-frame conversion, which can-

not account for the contextual information over a speech

sequence. Partially for this reason, it is observed that

the classical GMM-based mapping usually generates overly

smoothed utterances [7]. To overcome this problem, Toda et

al. [7] took consideration of the dynamic features with a tra-

jectory model and alleviate the overly smoothing problem by
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図 1 Framework of voice conversion with forced alignment.

considering a global variance feature. In this paper, we try

to solve this problem by using HMM. Different from GMM,

HMM provides a probability model for sequences and ac-

counts for the dynamic information by using transition prob-

abilities. The effectiveness of HMM has been demonstrated

in both speech recognition and speech synthesis. Motivated

by these facts, we study the HMM-based spectral mapping

techniques in this paper （注1）. Perhaps the most simplest

idea for applying HMM to voice conversion is to 1) prepare

a transformation for each state, 2) determine the optimal

state of each frame of an input utterance to be converted

with forced alignment (Viterbi decoding), and 3) convert

each frame vector by the transformation associated with its

optimal state (Fig. 1). This idea was adopted by previous

works [3]～[5]. However, forced alignment gives a hard seg-

mentation of the speech sequence. And this usually leads

to spectral jumps at the boundaries of segments, and dimin-

ishes the smoothness of converted speech. In this paper, we

deal with this problem by introducing a ‘soft’ mapping func-

tion. This soft mapping function is a weighted summation

of the linear transformations of all states, where the weights

are posterior probabilities of states given a source sequence.

2. 1 HMM-based sequence-to-frame mapping

This section describes the formal formulation of HMM-

based sequence-to-frame mapping. Consider an HMM with

K states. Let p(x|s) denote a state-observation probabil-

ity of frame vector x given state s, and p(s′|s) represent

a state-transition probability from state s to s′. In HMM,

the joint probability of speech sequence X = [x1, x2, ..., xT ]

and its corresponding state sequence S = [s1, s2, ..., sT ]

（注1）：Generally, the length of source utterance T has not to be equal

to the length of target utterance T ′. However, in this paper we assume

that T = T ′ in the HMM-based mapping for simplicity.
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図 2 Framework of proposed HMM-based voice conversion.

(1 <= st <= K) can be calculated by,

p(X, S) =P (X|S)P (S)

=

T∏
t=1

p(xt|st)p(s1)

T∏
t=2

p(st|st−1). (1)

Given state s and source vector x, we assume that target

vector y has the following linear-Gaussian distribution,

p(y|s, x) = N(y|Bsx + bs, Σs), (2)

where Bs, bs denote the linear transformation parameters,

and Σs represents the covariance matrix of the above linear-

Gaussian distribution. Then the expectation (mean) of y is

given by Ep(y|s,x)[y] = Bsx + bs.

With the HMM of source sequence X, we can calculate

the conditional probability of the t-th target vector yt given

sequence X as

p(yt|X) =
∑
S∈S

p(yt, S|X) =
∑
S∈S

p(yt|S, X)p(S|X), (3)

where S is the set of possible state sequences for X.

When state st is given, we assume that target vector yt

only depends on its corresponding source vector xt. This

allows us to make the following simplification,

p(yt|S, X) = p(yt|st, xt) = N(yt|Bstxt + bst , Σst). (4)

Under this assumption, we can deduce the probability of Eq.

3 as
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∑
S∈S

p(yt|S, X)p(S|X)

=
∑
st

∑
/st

p(yt|st, xt)p(S/st |X)


=
∑
st

p(yt|st, xt)
∑
S/st

p(S/st |X)

=

K∑
k=1

p(yt|st = k, xt)p(st = k|X), (5)

where S/st = s1, ...st−1st+1...sT . Noted that posterior prob-

ability p(st = k|X) can be calculated efficiently by the fa-

mous backward and forward algorithm of HMM[9]. With

Eq. 5, the mapping of sequence X to frame yt can be esti-

mated by

fHMM(X, t) =Ep(yt|X)[yt]

=

K∑
k=1

p(st = k|X)(Bkxt + bk). (6)

The above formula includes the multiplication of two parts,

one is the posterior probabilities of t-th state beining with

state k p(st = k|X), and the other is the linear transforma-

tions Bkxt + bk. The framework of our HMM based conver-

sion is depicted in Fig. 2.

2. 2 Estimation of mapping parameters

In this section, we discuss how to calculate the parame-

ters of HMM-based mapping function of Eq. 6 from a set of

training sequence pairs (Xn, Yn)N
n=1, where source sequence

Xn = [xn
1 , ..., xn

Tn
] and target sequence Yn = [yn

1 , ..., yn
Tn

].

We assume that Xn, Yn have been aligned by dynamic time

warping, and thus both have the same length denoted by Tn.

We can train an HMM from the utterances of source speaker

by the well known Baum-Welch algorithm [9] at first. And

posterior probability p(sn
t = k|Xn) (sn

t denotes the state

of frame xn
t in Xn) can be calculated with the backward

and forward algorithm of HMM. Then the problem here is

how to estimate the transformation parameters {Bs, bs, Σs}
for state s. In the following, we describe two approaches

for estimating these parameters. One is least square er-

ror (LSE) estimation and the other is maximum likelihood

(ML) estimation. For convenience, we introduce notation

rt,k,n = p(sn
t = k|Xn).

2. 2. 1 Least square estimation

The objective function of least square estimation is,

min
{Bk,bk}

N∑
n=1

Tn∑
t=1

|fHMM(Xn, t) − yn
t |2

=
N∑

n=1

Tn∑
t=1

|
K∑

k=1

rt,k,n(Bkxn
i + bk) − yn

i |2. (7)

This is a linear optimization problem, which can be solved

directly. For simplicity, we introduce argument vector x̂ =

[xT , 1]T and set Akx̂n
t = Bkxn

t + bk. Further, the following

notations are used Xn
k = [r1,k,nx̂1, r2,k,nx̂2, ..., rTn,k,nx̂Tn ],

Xk = [X1
k , ..., XN

k ], X = [X⊤
1 , X⊤

2 , ..., X⊤
K ]⊤, Yn =

[y1, y2, ..., yTn ], and Y = [Y1, Y2, ..., YN ], where ’⊤’ denotes

matrix transpose. The optimal matrices {A∗
k} for Eq. 7 are

given by

[A∗
1, A

∗
2, ..., A

∗
K ] = YX̂⊤(X̂X̂⊤)−1. (8)

However, this is very computationally expensive, since ma-

trix X̂ has a size of K(d+1)×
∑

n Tn. To overcome this limi-

tation, we use the following decomposition method. Remind∑
k rt,k,n = 1 and rt,k,n > 0. According to Jensen’s inequal-

ity, we have |
∑

k rt,k,n(yn
t −Akx̂n

t )|2 <=
∑

k rt,k,n|yn
t −Akx̂n

t |2.
Therefore, Eq. 7 can be approximated by the following upper

bound,

arg min
{Ak}

∑
k

∑
n

∑
t

rt,k,n|yn
t − Akx̂n

t |2. (9)

This can be further decomposed into K independent linear

optimization problems,

arg min
Ak

∑
n

∑
t

rt,k,n|yn
t − Akx̂n

t |
2. (10)

The optimal matrix for Eq. 10 is given by A#
k =

YX⊤
k (XkX⊤

K)−1. These calculations are closely related to

those discussed in our previous work on MPLR [8].

2. 2. 2 Maximum likelihood estimation

Although least square estimation is simple and has a closed

form solution, it doesn’t consider the covariance matrices

{Σs} in Eq. 2. In the section, we make use of maximum

likelihood (ML) estimation to overcome this problem. For

linear regression, LSE and ML estimations lead to the same

estimations. However, as we will see shortly this is not the

case for our problem. Formally, ML estimation is defined as,

max
Bk,bk,Σk

∏
n

∏
t

p(yn
t |Xn)

=
∏
n

∏
t

K∑
k=1

p(sn
t = k|Xn)N(yn

t |Bkxn
t + bk, Σk). (11)

Then log likelihood function is given by,

L({Bk, bk, Σk})

=
∑

n

∑
t

log

(
K∑

k=1

p(sn
t = k|Xn)N(yn

t |Bkxn
t + bk, Σk)

)
.

(12)

For convenience, we introduce parameters γt,k,n and βt,k,n

as follows
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Algorithm 1 EM algorithm for ML estimation

1: Initialize transformation parameters {Bk, bk, Σk}.
2: E-step: Calculate hidden parameters {γt,k,n} and {βt,k,n}.
3: M-step: Estimate the following parameters.

Nk =
∑
n

∑
t

βt,k,n, (18)

x̄k =
1

Nk

∑
n

∑
t

βt,k,nxn
t , (19)

ȳk =
1

Nk

∑
n

∑
t

βt,k,nyn
t , (20)

Σxx
k =

1

Nk

∑
n

∑
t

βt,k,n(xn
t − x̄k)(xn

t − x̄k)⊤, (21)

Σyx
k =

1

Nk

∑
n

∑
t

βt,k,n(yn
t − ȳk)(xn

t − x̄k)⊤, (22)

Σyy
k =

1

Nk

∑
n

∑
t

βt,k,n(yn
t − ȳk)(yn

t − ȳk)⊤. (23)

Update transformation parameters as

B∗
k = Σyx

k (Σxx
k )−1, (24)

b∗k = ȳk − B∗
k x̄k, (25)

Σ∗
k = Σyy

k − Σyx
k (Σxx

k )−1(Σyx
k )⊤. (26)

4: Evaluate the log likelihood L({Bk, bk, Σk}).
5: Terminate the procedure when convergence, otherwise go to

step 2.

γt,k,n = N(yn
t |Bkxn

t + bk, Σk), (13)

βt,k,n =
γt,k,nrt,k,n∑
j γt,j,nrt,j,n

. (14)

To maximize Eq. 11, we calculate the derivatives of log like-

lihood L as,

∂L
∂bk

=
∑

n

∑
t

βt,k,n(Σk)−1(yn
t − Bkxn

t − bk) = 0, (15)

∂L
∂Bk

=
∑

n

∑
t

βt,k,n(Σk)−1(yn
t − Bkxn

t − bk)xn
t
⊤ = 0,

(16)

∂L
∂Σk

=
∑

n

∑
t

1

2
βt,k,n{(Σk)−1(yn

t − Bkxn
t − bk)

(yn
t − Akxn

t − bk)⊤(Σk)−1 − (Σk)−1} = 0. (17)

The above formulas don’t have closed form solutions, since

{βt,k,n} include the parameters {Bk, bk, Σk}. Then we de-

velop the following EM algorithm for parameter estimation.

3. Experiments

We carried out experiments to evaluate the proposed two

HMM-based voice conversion methods. We made use of the

ATR-503 phoneme balanced sentences in the experiments.

The data set used contains 503 utterances from a male

speaker and another 503 utterances from a female speaker

with the same linguistic contents. The sampling frequency

is 16k Hz. For each utterance, we calculated its 24-D cep-

表 1 Average cepstrum distortions [dB] of LSE and MLE. (N

is the number of training utterances. M is the number of

states.)

N (M = 10)

Method 10 20 30 50 100 200

LSE 5.030 4.881 4.832 4.784 4.758 4.735

MLE 5.037 4.884 4.836 4.786 4.759 4.736

M (N = 150)

Method 5 7 9 15 30 50

LSE 4.780 4.766 4.760 4.751 4.741 4.745

MLE 4.781 4.767 4.761 4.754 4.742 4.746

strum sequence. We made the conversion from female voice

to male voice. As a preparation, the training utterances of

the source speaker and the target speaker are aligned by

dynamic time warping (DTW). In all the following exper-

iments, ergodic HMMs are trained for the utterances of a

source speaker. The cepstrum distortion [1] between the tar-

get cepstrum vector [y1
t , ..., y24

t ] and the converted cepstrum

vector [y1
c , ..., y24

c ] is defined by,

CD[dB] =
10

ln 10

√
2
∑

d

(yd
t − yd

c )2. (27)

And we calculate the average cepstrum distortion as an ob-

jective evaluation measure.

3. 1 Comparison of LSE and MLE

We make comparison between the two parameter estima-

tion methods, least square estimation (LSE) and maximum

likelihood estimation (MLE). We changed the number of

training utterances and the number of states. In both ex-

periment, the testing set are 50 new utterances. The results

are sumarized in Table 1. As one can see, LSE and MLE

have very similar performance, but the cepstrum distortion

of LSE is a bit smaller than that of MLE. This is because

LSE directly minimizes squared errors. Note that as MLE

requires EM iterations, MLE is much more computationally

expensive than LSE.

3. 2 Experiment 2

In this experiment, we made comparison between the pro-

posed HMM-based mapping method with LSE estimation

and the previous HMM-based mapping method [4]. We con-

ducted two experiments. In the first experiment, we fixed the

states of HMM as 5 and changed the number of training ut-

terances. In the second experiment, we changed the number

of states of HMM while 150 training utterances were used

for training. The test set includes 50 different utterances.

The results are shown in Fig. 3 and Fig. 4. As one can see

that the proposed method always outperforms the previous

HMM-based conversion method. We can also find that the

difference between the two methods enlarges as state num-

ber increases. This is because as state number increases, the
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図 3 Comparison of the proposed method and the previous forced

alignment based mapping method with various numbers of

training utterances.

図 4 Comparison of the proposed method and the previous forced

alignment based mapping method with various numbers of

states.

forced alignment of the previous method leads to more seg-

ments and thus more boundaries with spectral jumps, which

affects its performance. We also conducted experiments to

make comparison with GMM-based mapping. The cepstral

distortions of both methods are similar. The experimental

results are still limited here. We will examine the proposed

method with bigger database and a larger number of states

in the future.

4. Conclusions

This paper studies a HMM-based sequence-to-frame map-

ping method for voice conversion. The objective of using

HMM is to model the dynamic and contextual information

in speech sequence. We derive a novel HMM-based map-

ping function with statistical analysis. The mapping func-

tion is composed of the weighted summation of linear trans-

formations estimated for each state, where the weights are

calculated as posterior probabilities using forward and back-

ward algorithms. We develop two methods to estimate trans-

formation parameters of the mapping function, one is least

square estimation (LSE) and the other is maximum likeli-

hood estimation (MLE). The former can be reduced to a

linear optimal problem, and has its closed form solution.

For the latter, we develop an EM-based algorithm to cal-

culate the optimal parameters. Compared with the previous

GMM-based voice conversion techniques, the use of HMM

allows us to account for contextual information in speech

signals. Compared to the previous HMM-based voice con-

version method, our method use a soft mapping function to

avoid spectral jumps at state boundaries. We carried out ex-

periments to compare LSE and MLE. The results show that

both methods have very similar performance. We also con-

ducted a comparative experiment with the previous HMM-

based mapping method [4]. The results indicate that our

method has a better performance in terms of cepstrum dis-

tortion. We also conducted comparison experiments with

GMM-based methods, but found the cepstrum distortions of

both methods are near. Finally, it is noted that experimental

results are only limited in the current version. Several ex-

periments with more data and a larger number of states are

still on the way. We are also going to carry out a subjective

test to assess the proposed methods.
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