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Abstract—This paper points out that no existing technically-
implemented speech model is adequate enough to describe one
of the most fundamental and unique capacities of human speech
processing. Language acquisition of infants is based on vocal
imitation [1] but they don’t impersonate their parents and imitate
only the linguistic and para-linguistic aspects of the parents’
utterances. The vocal imitation is found only in a few species
of animals: birds, dolphins, and whales, but their imitation is
basically acoustic imitation [2]. How to represent exclusively what
in the utterances human infants imitate? An adequate speech
model should be independent of the extra-linguistic features
and represents only the linguistic and para-linguistc aspects. We
already proposed a new speech model [3], called speech structure,
which is proved mathematically to be invariant with any kind
of transformation. Its extremely high independence of speaker
differences was shown experimentally [4], [5], [6]. In this paper,
by reviewing studies of evolutionary anthropology and language
disorders, we discuss the theoretical validity of the new model to
describe the human-unique capacity of speech processing.

I. INTRODUCTION

To build speech systems for speech recognition and/or

speech synthesis, speech features are always extracted from

speech waveforms and are used to realize these functions on

machines. One of the most fundamental speech features is the

spectrum envelope, which is compactly represented using cep-

strum coefficients. Since the auditory characteristics of an ear

are insensitive to changes of phase characteristics of a sound,

scientists and engineers often focus only on its (logarithmic)

amplitude characteristics. Further, considering the mechanical

and acoustic properties of producing speech sounds using the

vocal cords and the vocal tract, the amplitude characteristics

are often divided into two parts: the characteristics of source

and those of filter, shown in Figure 1. Although the spectrum

envelope is extracted after two steps of information separation,

it is still easily affected by linguistic factors, para-linguistic

factors, and extra-linguistic factors.

Take linguistic and extra-linguistic factors here for example.

Two words are produced acoustically by a single speaker using

different articulatory movements. Then, the two words come to

show two different temporal patterns of the spectrum envelope.

A single word is produced by two speakers, who are supposed

to have the different length and shape of the vocal tract. Also

in this case, the two utterances come to show two different

temporal patterns of the spectrum envelope. If one wants to

build a speaker-independent word recognizer, the simplest way
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Fig. 1. Two steps of information separation to derive the spectral envelope

is to collect a large number of samples from different speakers

for each word in the vocabulary and calculate a statistical

model, such as HMM, for each word: P (o|w). Similarly, the

simplest way to built a text-independent speaker recognizer

is to collect a large number of speech samples of different

words for each speaker and calculate a statistical model, such

as GMM, for each speaker: P (o|s). Since o heavily depends

both on w and s, P (o|w) and P (o|s) should be rewritten as

P (o|w) =
∑

s

P (o|w, s)P (s|w) ≈
∑

s

P (o|w, s)P (s) (1)

P (o|s) =
∑

w

P (o|w, s)P (w|s) ≈
∑

w

P (o|w, s)P (w). (2)

Here, w and s are assumed to be independent. Both equa-

tions are expectation (marginalization) operations of P (o|w, s)
but with regard to different variables: s and w. Expectation is

a useful tool to hide variables that are irrelevant to the target

function, but it requires an extensive collection of samples.

If speech feature o can be further separated into ow and

os, corresponding to words and speakers, the collection is not

required and P (ow|w) and P (os|s) may be able to make word

recognition and speaker recognition even simpler.

In this paper, we focus on Equation (1). By reviewing

studies of evolutionary anthropology and those of language

disorders, we discuss that this collection (expectation) ap-

proach may provide us with only a speech model of not

typically developed individuals but severely impaired autistics,

or a model of animals. In either case, normal acquisition

of speech communication becomes difficult. How to build a

human speech model with normal development? We claim that

we have to add yet another information separation (o→ow+os)

to Figure 1 and discuss the validity of our recently proposed

model [3] to this aim in the current paper.
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II. INFANT BEHAVIORS IN LANGUAGE ACQUISITION

Why is an extensive collection of samples required? The

reason is simple and it is because o in P (o|w) is heavily

dependent also on s. For example, IBM once announced for

advertisement that IBM had collected speech samples from

350 thousands of speakers to build its ASR engine.

Every typically developed individual shows an extremely

robust capacity for understanding spoken language. How does

an infant acquire it? One obvious fact is that a majority of the

utterances an infant hears come from its parents. After it begins

to talk, about a half of the utterances it hears are its own. It can

be claimed that the utterances an individual hears are strongly

speaker-biased unless he or she has speaking disabilities. With

this obvious fact, we claim that speech processing based on

Equation (1) is unnatural and far from the human strategy.

Even with the so-called speaker-independent HMMs, they

are often adapted acoustically to new speakers to minimize

acoustic mismatch between training and testing conditions.

Basically speaking, in the current framework of speech recog-

nition, the degree of linguistic equivalence (similarity) between

two utterances is measured quantitatively through acoustic

equivalence. Looking at the behaviors of infants in language

acquisition, however, we can claim easily again that this

machine strategy seems reasonably unnatural and weird.

Infants acquire language through active imitation of their

parents’ utterances called vocal imitation [1]. In this process,

it is obvious that infants do not try to produce utterances

acoustically matched with their parents’ utterances. They do

not impersonate their parents. They are very insensitive to

extra-linguistic differences in language acquisition. A question

is raised: how to represent what in the utterances human

infants imitate? Researchers often represent it using a sequence

of phoneme-like units [7], which certainly does not include any

extra-linguistic features. Does this mean that, in the process

of vocal imitation, infants represent a given utterance using

phonemes and then convert each phoneme back to a sound?

We can say “No way!” because infants have no good phonemic

awareness [8], [9]. Writing, including phonemic symbols, is

merely a way of recording language by visible marks [10] and

the capacity of using these marks requires children to learn

written language, especially alphabets, for some years [11].

How then to represent acoustically what in the utterances

human infants try to reproduce? What kind of acoustic pattern

is underlying commonly between the utterance of a parent and

the imitative response of an infant? This acoustic pattern has

to be truly speaker-independent, different from the so-called

speaker-independent HMMs, which are often modified to new

speakers. Some researchers of infant study explain this pattern

using the terms of holistic word form [8], word Gestalt [12],

and related spectrum pattern [13]. However, we could not find

any mathematical formula for them. If a mathematical formula

is made possible, P (ow|w) can be modeled with os excluded.

Without this model, however, extensive collection or acoustic

match through model adaptation is always required although

neither of them is needed for human infants.

As far as we know, in some cases, human vocal imitation

becomes like acoustic impersonation, where every aspect of a

given utterance is to be reproduced. o in P (o|w, s), not ow in

P (ow|w), is the target of imitation. This performance is found

in severely impaired autistics [14], [15], [16], [17], who have

much difficulty in normal acquisition of speech communica-

tion. A Japanese autistic woman stated that it is difficult for her

to repeat normally what an English teacher says in a language

class because pronunciation training requires her to produce

acoustically “mismatched” and different sounds from what the

teacher says [17]. Her default strategy of repeating after her

teacher is acoustic imitation. In [18], an autistic boy wrote that

he could understand what his mother was saying but it was

difficult for him to understand others. His mother said that it

seemed even difficult for him to understand her on a telephone

line. We consider that P (ow|w) is a requisite model to realize

the human-like flexible processing on machines.

III. COGNITIVE DIFFERENCES BETWEEN ANIMALS AND

HUMANS

The performance of vocal imitation is scarecely found in

animals. Non-human primates do not imitate [19]. Only a

few species do, such as birds, dolphins and whales [2]. But

there exists a critical difference between the vocal imitation

of humans and that of animals. Basically speaking, animals’

imitation is acoustic like impersonation [2]. A similar finding

was obtained in a study of evolutionary anthropology [20].

Although humans easily perceive the equivalence between a

melody and its transposed version, it was found to be difficult

for monkeys to perceive it. It seems adequate to claim that

animals store absolute acoustic properties of input stimuli

in memory and use them to judge to which one of the old

stimuli a new stimulus is identical [21]. In other words, unlike

humans, acoustic match is always needed for equivalence.

Temple Grandin, a professor of animal sciences who is herself

autistic, explained the similarity in information processing

between animals and autistics [22]. The basic strategy is to

store every detailed aspect of incoming stimuli in memory.

Humans with typical development can perceive the equiv-

alence between two utterances of the same linguistic content

not based on acoustic equivalence, not based on string-based

equivalence but based on some other kind of equivalence. By

referring to a term used in developmental psychology, this

equivalence should be called as Gestalt-based equivalence and

the degree of this equivalence is considered to be able to be

calculated quantitatively using P (ow|w). Without this model,

the performance of a resulting system will have to resemble

that of animals or severely impaired autistics. For example, as

far as we know, almost all the types of speech synthesizers

reproduce the voices of a training speaker acoustically. This

is why possibility of using speech synthesizers to deceive a

speaker verification system is discussed [23]. We seriously

wonder whether they are simulators of humans or parrots.

IV. NATURE OF PERCEPTUAL CONSTANCY

Our perception is not only robust against speech variability

but also against variability in other media. Psychologically

speaking, robustness of perception is called perceptual con-

stancy. Psychologists have discovered that, among different

media, a similar mechanism functions [24], [25].
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Fig. 2. The same Rubik’s cube seen through two colored glasses

Fig. 3. Perception of colors without context [26]

Fig. 4. A melody (C-major) and its transposed version (G-major) ! " # $ % &  ! " # ' $ % &( ) * + ) , -  ( - . ! /0 / - 1 + 2
Fig. 5. Variation in tonal arrangement due to historical and regional factors

Figure 2 shows the appearance of the same Rubik’s cube

seen through differently colored glasses [26]. Although the

corresponding tiles of the two cubes have objectively different

colors, we label them identically. On the other hand, although

we see four blue tiles on the top of the left cube and seven

yellow tiles on the right cube, when their surrounding tiles

are hidden, we suddenly realize that they have the same color,

shown in Figure 3. We have to admit that objectively different

colors are perceived as identical subjectively and objectively

identical colors are perceived as different subjectively. To

realize a human-like processor, this mysterious perception has

to be explained reasonably and implemented on machines.

Similar phenomena can be easily found in tone perception.

Figure 4 shows a melody and its transposed version. If listen-

ers have relative pitch and can transcribe these melodies, they

describe them as the same sequence of syllable names: So Mi

So Do La Do Do So. The first tone of the upper sequence and

that of the lower are different in fundamental frequency but

listeners can name these tones as So. The first tone of the upper

and the fourth of the lower are physically identical but the two

tones are identified as different. Objectively different tones are

perceived as identical subjectively and objectively identical

tones are perceived as different subjectively. Similar to color

perception, if a tone is presented without any surrounding

tones, syllable name identification becomes impossible.
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Fig. 6. Variation in American English vowel arrangement [28]

Commonly in colors and tones, it can be claimed to some

degree that we perceive the value of each stimulus based on

its relations to the surrounding stimuli and that perceptual

constancy is realized because the relations are invariant to

variability. As described in Section III, perceptual constancy

of tones is not observed even in monkeys but that of colors is

found in animals including butterflies and bees [27]. Constancy

in color is very old and that in tone is very new evolutionarily.

Figure 5 shows the scale of the major and this tonal

arrangement is key-independent. Robust syllable name iden-

tification is possible due to this key-independence. However,

this arrangement pattern can be changed for historical and

regional reasons. In Figure 5, two other scales are also shown.

One is a scale used in the medieval church music and the

other is the Arabic scale. If a modern Western melody is

played with these scales, syllable name identification becomes

difficult when listeners are not familiar with these scales1. A

similar variability in arrangement is found in language.

Figure 6 shows variation in vowel arrangement (in part) of

several regional accents of American English [28] by using the

F1/F2-based vowel chart after vocal tract length normalization.

Within a region, a fixed vowel arrangement pattern is observed

independently of speakers. In other words, infants tend to ac-

quire or memorize not individual sounds acoustically in given

utterances but the sound system underlying those utterances.

It is natural that two speakers of different regional accents

experience some miscommunications if they are unfamiliar

with the sound arrangement of each other.

In classical studies of speech science, robust speech per-

ception was discussed theoretically and experimentally based

on invariant relational features among speech sounds [29],

[30]. However, we could not find any mathematical formula to

define the invariant relations against a large variety of trans-

formations representing speaker and environment differences.

V. INFORMATION SEPARATION ON THE BRAIN

Researchers of neurosciences have achieved a reasonably

good consensus on how visual objects are represented in the

visual cortex of the brain. The cortex has two pathways, ventral

and dorsal, and the former identifies objects, called “what”

pathway, and the latter analyzes their positions and motions

in the space where the objects are found, called “where” or

“how” pathway [31]. To enable these functions, visual stimuli

1The author strongly recommends readers to try the following two melodies:
a Western melody and its Arabic version.
http://www.gavo.t.u-tokyo.ac.jp/˜mine/material/western.wav
http://www.gavo.t.u-tokyo.ac.jp/˜mine/material/arabic.wav

The author expects that many readers suspect that the arabic version may be
a performance by an untuned (or broken) piano. But Arabic listeners perceive
high familiarity with this performance because the Arabic scale is their native
tone arrangement. It is the case with language (See Figure 6).
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are considered to be separated adequately and represented in

a specific form in each pathway of the visual cortex.

Following this consensus on the visual cortex, it seems that

researchers began to consider that auditory information will

also be processed separately in the auditory cortex. Referring

to discussions on what kind of separation can characterize the

brain functions anatomically well, it is reasonable to assume

that verbal information and indexical (speaker) information

conveyed in a single speech stream are separately represented

and processed [32]. Further, some researchers claim that the

former is encoded as spectral motions or modulations [33].

If speaker information is separated from a speech stream,

it will be possible to derive a speech representation in which

speaker cannot be identified at all. Generally speaking, the

acoustic characteristics of speech sounds are influenced by the

size and shape of the vocal tract of that speaker. This implies

that the desired representation has to be so abstract that, only

with it, any sounds cannot be realized acoustically. If possible,

then, speaker identify will be inevitably known to hearers.

As mentioned in Section IV, our brains are so robust that a

large variability in sensory stimuli is not blocking the smooth

processing of the stimuli. Neuroscientists consider that there

must be a mechanism of strong abstraction to cancel the

variations, which is assumed to be working in the higher levels

of the cortex, such as association and prefrontal areas [34].

In the following sections, we show our proposal of imple-

menting robust processing on machines. This speech model is

called speech structure, which we consider is a mathematical

and technical implementation of speech Gestalt, a common

speech pattern underlying the utterances of the same linguistic

content generated by different speakers. This speaker-invariant

speech pattern is derived based on mathematically guaranteed

relational and topological (morphological) invariance. After

introducing speech structure, we describe a method of applying

it to pronunciation assessment, not speech recognition. In both

applications, an input utterance is compared with statistically

trained templates. We selected pronunciation assessment here

because the merit of using speech structure will be understood

more easily by readers. If readers are interested in applying

speech structure to speech recognition, they should refer to [4],

which show both the merit and demerit of using structure.

VI. MATHEMATICAL AND TECHNICAL SOLUTION

In [35], we proved that f -divergence2 is invariant with any

kind of invertible and differentiable transform (sufficiency)

and that features invariant with any kind of transform, if any,

have to be f -divergence (necessity). As shown in Figure 7,

every event in a feature space has to be represented not as

point but as distribution. Since speaker differences are modeled

mathematically as space transformation, by representing an

utterance only with f -divergences, we can derive an invariant

word Gestalt mathematically. Figure 8 shows its calculation

procedure. A speech trajectory in a feature space is converted

into a sequence of distributions. In [4], this process was im-

plemented by applying the HMM training algorithm. Between

2fdiv(p1, p2) =
∮

p2(x)g
(

p1(x)
p2(x)

)

dx = fdiv(T (p1), T (p2))

x

y

u

v

A

B !  " # ! # "$ % & ' ( $ ) & * ( + , *+ , *
T
−1

T

Fig. 7. Complete transform-invariance of f -divergence
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c 3 c 2 

c 4 

c D 
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From frame sequence

to dist. sequence

From dist. sequence

to structure

Fig. 8. Utterance to structure conversion

Fig. 9. Complete topological invariance based on f -divergence

every distribution pair, f -divergence is calculated to form a

distance matrix. This matrix is the speech structure.

Figure 9 shows a famous example of deforming a mug to a

doughnut, often used to explain topology, a field of geometry,

where two shapes are treated as identical if they can be

transformed to each other continuously. Suppose that a number

of events exist as distributions on the surface of the mug.

When it is deformed in varying degrees into the doughnut,

f -divergences between any event pair cannot change. An f -

divergence-based distance matrix is completely invariant.

If one wants to focus on the dynamic aspect of an utterance,

he/she may calculate a velocity vector at each point in time,

i.e., delta cepstrum. We have to claim, however, that this strat-

egy is inadequate. Spectrum modification caused by vocal tract

length difference is often modeled as frequency warping. [36]

shows that this warping can be represented in the cepstrum

domain as multiplication of a specific type of matrix by a

cepstrum vector. In [37], we signified mathematically that this

matrix is approximated as rotation matrix and demonstrated

that the change of vocal tract length rotates a speech trajectory

well. Directional components of the trajectory are strongly

dependent on the speaker size. This is why we extract only

scalar features in Figure 8 as f -divergence.

We already applied this structural representation to speech

recognition [4], [35], pronunciation assessment [5], dialect-

based speaker classification [6], and speech synthesis [38].

In [4], [35], although the recognition task was small and

artificial, a truly speaker-independent speech (word) recognizer

was built only with several training speakers and without any

explicit normalization or adaptation. It should be noted that

our proposal is not for normalizing extra-linguistic features

but for removing them, i.e., information separation.

VII. APPLICATION TO PRONUNCIATION ASSESSMENT

In [5], a pronunciation structure was built from read sen-

tences of a male teacher of American English. With the
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Fig. 11. Results of the pronunciation assessment experiments

teacher’s utterances, speaker-dependent phoneme HMMs were

built. After selecting an adequate set of states automatically,

a state-based structure (distance matrix) was calculated for

that teacher (See Figure 10). From 26 Japanese students, their

pronunciation structures were also estimated using the same

set of states. By geometrically comparing the structure of the

male teacher to that of each student, the pronunciation profi-

ciency was estimated automatically. To test the robustness of

pronunciation structure, the utterances of students were mod-

ified through frequency warping [36] to simulate extremely

tall and short students. For comparison, GOP (Goodness Of

Pronunciation) [39], which is a widely-used technique to as-

sess the pronunciation using posterior probability of intended

phonemes was also tested. Figure 11 shows the correlations

between human assessment and two kinds of machine assess-

ment using structure and GOP. Although speaker-independent

HMMs were used to calculate GOP scores, the correlation

easily drops when acoustic mismatch exists between training

and testing conditions. However, a pronunciation structure

even extracted from a single male teacher can be effectively

used to evaluate students of any size.

Structural (geometrical) comparison between any pair of

students leads to a distance matrix of the entire students, which

shows distance between any pair of the students. With this

matrix, they can be classified based on bottom-up clustering.

The use of a different definition of distance between two

students leads to a different classification result. Here, a new

distance matrix was obtained by calculating acoustic distances

of the corresponding states between any pair of the students.

The former distance matrix is based on structural (relational)

comparison between students and the latter is based on spectral

(absolute) comparison between them. Figure 12 shows the

structural classification and Figure 13 shows the spectral clas-

sification. Ward’s method was used for bottom-up clustering.

Alphabets mean 26 students, who are 14 males (black) and 12

females (red). X and X are taller (α=-0.3) and shorter (α=0.3)

versions of student X, respectively. Clearly shown in these

figures, the former is purely (linguistic) pronunciation classi-

fication with (extra-linguistic) speaker differences ignored and

the latter is purely (extra-linguistic) speaker classification with

(linguistic) pronunciation differences ignored. We can claim

that information separation between the linguistic and extra-

linguistic aspects is successfully realized.

VIII. DISCUSSION AND CONCLUSIONS

Humans are insensitive to phase characteristics of a sound

when hearing it. Humans are also insensitive to extra-linguistic

features of utterances when acquiring spoken language. The

former insensitivity was already technically realized but the

latter seems not yet because researchers do not have a good

model for that. Observation of the behaviors of animals and

severely impaired autistics led us to consider that this insen-

sitivity is one of the most fundamental and unique capacities

of normally developed humans. It might be adequate to claim

that humans are the only species for which acoustic match has

become unnecessary to perceive the equivalence between two

acoustic stimuli. This enables generalization over a large vari-

ability of acoustic stimuli. In the current paper, a commonly

underlying speech pattern, speech Gestalt, was derived for

acoustically different utterances of the same linguistic content.

Then, this pattern was applied to pronunciation assessment.

In the conventional framework of speech processing, instead

of pursuing a good model, for example, a statistical model

of P (o|w) was created by collection and expectation or

acoustic adaptation of P (o|w) was examined. In this paper,

although no new experimental result was provided, we clearly

pointed out that, without a good model, the performance of

a resulting system has to resemble that of animals. Many

speech synthesizers can be regarded as parrot simulators. If

well-adapted HMMs are used for GOP, it can calculate scores

highly correlated with human scores. In this case, however,

what is assessed is not pronunciation but impersonation. In

[40], DTW-based comparison between a student’s utterance

and a teacher’s one was used for assessment. But the teacher’s

utterance was always adapted acoustically to the student’s

voice quality because DTW-based comparison is imperson-

ation assessment, not pronunciation assessment. Practically

speaking, these systems will function well if good conditions

are always prepared in advance. If one wants to develop

not only outwardly appearing but also internally human-like

speech systems, however, we believe that he/she has to pursue

a good model for information separation. Certainly, collection

and expectation is a powerful mathematical tool but careful

consideration should be made on how to combine collection

and separation. We can hardly claim that our proposal is the

best or only solution but can claim that the speech community

has to make good efforts to find a good human speech model.
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Fig. 12. Classification of Japanese students of the three sizes based on structural (relational) features (X=taller, X=original, X=shorter)
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Fig. 13. Classification of Japanese students of the three sizes based on spectral (absolute) features (X=taller, X=original, X=shorter)
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