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Abstract—This paper describes an improved method for the
framework of structure-to-speech conversion we proposed pre-
viously. This framework aims at building a speaking machine
by simulating infants’ language acquisition. Most of the speech
synthesizers take a phoneme sequence as input and convert it
to speech sounds, i.e. reading machines. Infants initially acquire
speech communication capacity without phonemes or reading.
Since their phonemic awareness is very immature, young children
can hardly decompose an utterance into a sequence of phonemes
but they enjoy speech communication with their parents. As
developmental psychology claims, infants acquire the holistic
sound patterns that underlie individual utterances, called word
Gestalt. Infants reproduce this sound pattern using their very
short vocal tubes, i.e. vocal imitation. In our previous studies,
the word Gestalt was defined mathematically, called speech
structure, and a method of extracting it from a word utterance
was proposed and applied to ASR and CALL. Further, a reverse
process, i.e. structure-to-speech conversion was realized. In this
paper, a method of improving our speech generation framework
based on a structural cost function is proposed and evaluated.
keywords-component; speech synthesis; structural representation;
invariance; vocal imitation; a structural cost function

I. INTRODUCTION

Most of the speech synthesizers are text-to-speech convert-

ers, i.e. reading machines. To enable humanoid robots to speak,

text-to-speech converters are often embedded. Here, unless text

or written form is provided, they have to be quiet or dumb.

In contrast, human children are very chatty even long before

they are able to use the written form of language.

If a speech synthesizer is build with a speech database of

speaker A, then, the synthesizer will generate the voices of that

speaker. Developmental psychology states that infants acquire

language through imitating utterances of their parents. It is

obvious, however, that they never impersonate their parents.

Animal sciences tell that the vocal imitation of animals, which

is found in birds, dolphins, and whales, are acoustic imitation

like impersonation [1]. Even in the case of humans, however,

the vocal imitation is acoustic when the performance of

severely impaired autistics is observed [2], [3], who have much

difficulty to acquire normal speech communication capacity.

Reviewing the findings of developmental psychology, ani-

mal sciences, and language disorders, we can say that a reading

machine based on acoustic imitation is not a good option to

build a not externally but internally human-like robot [4], [5].

What acoustic aspects of a parent’s utterances, does an

infant imitate? What is equivalent between a parent’s utterance
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Fig. 1. Speech sounds − vocal tube (size & length) = Gestalt.

and an infant’s imitative response? Word Gestalt [6], which is a

term used in developmental psychology, represents a common

sound pattern underlying both utterances but no psychologist

explains it using equations. What can be said at least is that

the word Gestalt has to be independent of the age, gender,

size, etc of speakers. It must be a very abstract representation.

Recently, we proposed a mathematical definition of the word

Gestalt [7]. Our method of extracting the Gestalt from an

utterance was introduced successfully to ASR and CALL [4],

[8]. In addition, we realized an inverse process, i.e. generating

a speech stream from its abstract and structural representation,

called structure-to-speech (STS) conversion [9]. However,

formulation was insufficient for complete implementation of

STS. In this paper, in order to satisfy the structural constraints

better, a method of improving our generation framework is

proposed by using a structural cost function.

II. ACOUSTIC DEFINITION OF THE GESTALT

As we mentioned above, the Gestalt is an abstract pattern

underlying an utterance, which is independent of the extra-

linguistic factors such as the vocal tract length (See Figure 1).

One may claim that a phonemic representation is also a

speaker-independent representation. However, since infants’

phonemic awareness is very immature, it is difficult for them

to decompose an utterance into phonemes [10]. We consider

that the phonemic representation is not a good option if one

wants to realize a human-like speaking module for humanoids.

In many studies of voice conversion, it is assumed that

speaker differences are well modeled as space mapping. This

indicates that invariance with speaker difference means map-

ping invariance. The distance measure of Equation 1, called f -

divergence, satisfies this mathematical property. It is invariant

with any kind of invertible and differential mapping [11].

fdiv(pi, pj) =
∮

pj(x)g
(

pi(x)
pj(x)

)
dx. (1)

Based on this invariant property, we introduced a transform-

invariant representation of an utterance, shown in Figure 2. A
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Fig. 2. Invariant structuralization of an utterance.
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Fig. 3. Structure extraction as HMM training of an utterance.

+ =

Fig. 4. Structure + vocal tube (size & length) = speech sounds

sequence of cepstrum vectors is converted into a sequence of

distributions through merging similar frames and estimating

a distribution for the merged frames. After that, every sound

contrast between any two distributions, even including tem-

porally distant ones, is calculated as Bhattacharyya distance

(BD), which is a member of the f -divergence family. An ut-

terance is represented as a transform-invariant distance matrix,

which can uniquely characterize a geometrical shape, i.e. a

holistic pattern of that utterance. We call this distance matrix

as speech structure and believe that this structure corresponds

to the Gestalt. In [4], this procedure was implemented as MAP-

based HMM training for an utterance, shown in Figure 3.

Figure 2 shows that a speech structure is estimated by

extracting speech contrasts (dynamics) only and discarding all

the absolute and static features. Putting it another way, only

articulatory movements are focused on and the articulatory

features corresponding to the static and default shape of the

vocal tube are ignored completely (See Figure 1).

The structure is so abstract a representation of an utterance

that, with it only, speech sounds cannot be recovered or

determined at all, shown in Figure 2. To determine and locate

the sounds of a given structure, what should be additionally

needed? Looking at Figure 1, we can say that the static and

default shape of the vocal tube is required for the Gestalt

to be realized acoustically. Figure 4 explains this process

conceptually and, in the following section, this process of

structure-to-speech conversion is implemented on computers.

III. STRUCTURE TO SPEECH CONVERSION

A. Searching a cepstrum space for target speech events

Here, conversion from a given structure to a speech sound

sequence is implemented as follows. Several events of a given

structure are fixed absolutely in advance. This step means that
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Fig. 5. Search for the next target under structural constraints.

the default shape of the vocal tube is determined. Then, using

these points as initial conditions and the structure (distance

matrix) as constraint conditions, all the other events of the

structure are searched for in a cepstrum space. Figure 5 shows

how to search for the next target using 3 already determined

events (colored ellipsoids) and structural constraints. In the

case of infants’ vocal imitation, the structural constraints are

given from their parents. About the initial conditions, infants

may use some speech sounds which they actually generated

through vocal communication or playing with their parents.

B. Geometrical solution of the problem

How do we solve this searching problem? In our previous

work, a geometrical approach was adopted [9]. This section

describes the previous method briefly. When two distributions

are Gaussian, i.e. P1=N (μ1,Σ1) and P2=N (μ2,Σ2), BD

between them is formulated as follows,

BD(P1,P2) =
1
8
μt

12V
−1
12 μ12 +

1
2

ln
|V 12|

|Σ1| 12 |Σ2| 12
, (2)

where μ12=μ1−μ2, V 12=Σ1+Σ2
2 . BD is invariant to any

common linear and non-linear transform. Now let us consider

a D-dimensional cepstrum space. Suppose that Σ1, Σ2 and

μ2 are already determined speech features and that we have to

locate μ1 in the cepstrum space using Equation 2 as structural

constraint. In this case, the locus of μ1 is found to draw a

hyper-ellipsoid, ellipse in a D-dimensional space. Similarly,

constraint BD(P1,Pi) (i �= 2) draws an i-th hyper-ellipsoid

for μ1. From this fact, the intersection of multiple ellipses

gives us the final solution for μ1. In other words, solving

simultaneous equations with a D-dimensional unknown vector

will find a candidate for a target event. However, simultaneous

equations in the quadratic form (e.g. Equation 2) with D
unknowns generally have multiple solutions. For solving this

ambiguity, each target was estimated by merging multiple

candidates from several sets of simultaneous equations derived

from the structural constraints and the initial conditions.

C. Optimization using a structural cost function

The above formulation, which was proposed in [9], has two

problems. The first problem lies in simultaneous equations. Let

us assume that we have to estimate a target in a D-dimensional

space using m initial conditions and the structural constraints

related to them. In this case, if D>m, the resulting simulta-

neous equations are ill-formed. If D<m, on the other hand,

mCD sets of simultaneous equations are possible and it takes

a long computation time to solve each set, especially when D
is high. Further, merging (averaging) several candidates does

not always guarantee an optimal solution.
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The second problem is that each target is estimated inde-

pendently. Then, when we have multiple targets, the searching

method in [9] does not give us the targets that can satisfy their

structural constraints fully because the structural constraints

among the estimated targets are ignored.

To solve these problems, we propose a searching method

based on a structural cost function for the first problem and

stepwise reestimation for the second problem. Now we assume

that all the covariance matrices are given and that we have to

locate the mean vector μ of a target event using m initial

conditions (events). We introduce a cost function J(μ) as

J(μ) =
m∑

i=1

(bd(μ, ci) − BDi)
2
, (3)

where BDi is a structural constraint (distance) between initial

condition (event) i and the target event and bd(μ, ci) repre-

sents the actual BD between event i and μ, which is estimated

(updated) so far. From Equation 2, bd(μ, ci) becomes

bd(μ, ci) = (μ − ci)tAi(μ − ci) + εi, (4)

where εi represents the second term and Ai represents 1
8V −1

12

in Equation 2. To acquire the optimal μ, updating equations(
∂2J

∂μ2

)
Δμ =

∂J

∂μ

∣∣∣∣
μn

(5)

μn+1 = μn − Δμ, (6)

are used until Δμ becomes sufficiently small.

For the second problem, stepwise updating is adopted. The

concept of this method is that already estimated events are

used as initial conditions for reestimation. Let us assume the

case of n targets and m initial conditions. As Step 1, each

target is estimated independently. In Step 2, one event out of

the n estimated events is selected and reestimated using the

other n−1 estimated as initial conditions. This step is repeated

for each of the other n−1 events. Finally, all the n+m events

are dealt equally, i.e. a target and n+m−1 initials. The same

reestimation process in Step 2 was repeated twice.

IV. EXPERIMENT

A. Experimental conditions

To evaluate the proposed framework quantitatively, experi-

ments using Japanese /aiueo/ utterances were carried out. We

used speech samples from 6 speakers (M1, M2 and M3 as

male and F1, F2 and F3 as female). The word Gestalt was

extracted from utterances of M1 and F1, and used as structural

constraints when searching for target events.

To convert a spectrum sequence to a cepstrum sequence,

STRAIGHT analysis [12] was adopted and a sequence of 40

dimensional vectors was obtained. For converting a cepstrum

sequence to a distribution sequence, MAP-based HMM pa-

rameter estimation was adopted since all the distributions had

to be estimated from a single utterance. Then, an utterance

was converted into a sequence of 25 diagonal Gaussians. In

addition, parameter division proposed in [4] was carried out.

From a single cepstrum stream, low dimensional sub-streams

were formed. In this experiment, the number of dimensions

for each sub-stream was changed from 1 to 5. The searching

problem was solved in each sub-space.

Some portions of the other utterances from M2, M3, F2

and F3 (henceforth target speakers) were used as initial condi-

tions. After extracting prosodic features from these utterances

with STRAIGHT, the utterances were also converted into a

sequence of 25 diagonal Gaussians. After that, 5 mean vectors

(3rd, 8th, 13rd, 18th, and 23rd ones in the 25 Gaussians) were

used as a part of initial conditions. In this experiment, all the

covariance matrices of target events were given and also used

as initial conditions. With these initial conditions of the target

speakers and the structural constraints from M1 and F1, the

remaining mean vectors were treated as targets.

Finally using the prosodic features extracted above and a

sequence of obtained distributions, utterances of the target

speakers were synthesized. When we compare this experiment

with infants’ vocal imitation, M1 and F1 are a father and a

mother and target speakers are sons and daughters, who try

to extract the word Gestalt underlying their parents’ utterance

and reproduce it acoustically using their vocal tubes.

B. Results

Figure 6 shows (a) the spectrogram of a resynthesized

utterance of M1, (b) that of a resynthesized utterance of M2,

and (c) and (d) are those of synthesized utterances with M1’s

structure and M2’s initial conditions (M2’s imitation through

M1’s Gestalt). (c) is a result by the previous method [9], and

(d) is a corresponding result by the proposed method. The

number of sub-streams is 40 (one-dimensional sub-streams) in

(c) and 10 (four-dimensional sub-streams) in (d). In (c) and (d),

the spectrum slices in five square boxes were given as initial

conditions. Comparing (c) and (d) with (a) and (b) visually,

we can find that the spectrograms of (c) and (d) are closer to

that of (b). In addition, the spectrogram of (c) includes some

discontinuities but that of (d) does not. It implies that speaker

identity is well realized in (c) and (d) and that a structural cost

function effectively improves the quality.

V. SUBJECTIVE EVALUATION

A. Conditions

A listening test was carried out to evaluate the naturalness

of speech samples generated by the proposed method. The

test was conducted with 11 subjects with normal hearing, who

compared the utterances synthesized by the proposed method

and those by our previous method [9]. All the samples for

evaluation were /aiueo/ utterances and they were synthesized

under different conditions: (1) combination of 2 parents × 4

children and (2) the number of dimensions for sub-streams.

When synthesizing utterances by our previous method, the

number of dimensions for sub-streams were one or two. The

listening test was a paired comparison. Each subject listened

to a pair of stimuli synthesized on different conditions where

only the term of (2) is different. Then, he/she was asked to

judge which of the two samples was more natural.
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(a): resynthesized speech of M1 (father).
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(b): resynthesized speech of M2 (boy).
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(c): Output speech synthesized with M1’s structure and

M2’s initial conditions by using the method in [9].
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(d): Output speech synthesized with M1’s structure and

M2’s initial conditions by using the proposed method.

Fig. 6. Spectrograms of resynthesized speech (a and b) and synthesized speech (c and d); (a) M1 (father), (b) M2 (boy), (c) M1’s structure + M2’s initial
conditions (geometrical solution) and (d) M1’s structure + M2’s initial conditions (cost function based solution).

 0

 20

 40

 60

 80

 100

P
re

fe
re

nc
e 

sc
or

e 
[%

]

95% confidence interval

BS=1 BS=2 BS=1 BS=3 BS=4 BS=5BS=2
previous method proposed method

Fig. 7. Results of subjective evaluation.

B. Results

Figure 7 shows preference scores of the subjective test. In

Figure 7, the block size (BS) means the number of dimensions

for each sub-stream. From Figure 7, in the previous method

[9], the higher number of dimensions degrades the quality

of synthesized speech. In the proposed method, however, the

quality improves when the number of dimensions is higher.

Especially in the cases of BS=4 and BS=5, the preference

scores of our new methods exceed those of the method [9]. In

addition, computational cost of our new method is lower than

that of the previous one even in the case of larger block sizes.

This result means that it is easier in a high dimensional space

than a low dimensional space to find the optimal speech event

by using a proper constraint, i.e. a structural cost function. On

the other hand, in the previous method, the quality is degraded

in the case of BS=2 due to the difficulty of accurate solution

of simultaneous equations in a high dimensional space.

VI. CONCLUSIONS

We have proposed a new method for the framework of

structure-to-speech conversion. In this framework, the word

Gestalt is extracted from an input utterance and reproduced

acoustically with some initial conditions given. Here, the

linguistic aspect of the input utterance retains but the extra-

linguistic aspect changes. This performance is very similar to

that of voice conversion, where speaker identity is changed

with the linguistic content unchanged. Our method, however,

has an internal and abstract representation or model of an utter-

ance, called speech structure, that can be used directly for ASR

and CALL. This is a significant difference between structure-

to-speech conversion and voice conversion. This framework

can also simulate infants’ vocal imitation.
A method proposed in this paper has improved the sound

quality of synthesized speech. One of the reasons of this

improvement is that a structural cost function makes it possible

to find the optimal speech event in a high dimensional space

more efficiently. For further improvement of our framework,

we’re planning to synthesize words including consonants and

to integrate the prosodic aspect into the framework.
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