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Abstract

Recently, a novel and structural representation of speech was
proposed [1, 2], where inevitable acoustic biases caused by static
extra-lingusitic factors are completely removed from speech.
This speech structure is composed of only transform-invariant
(topologically invariant) speech contrasts or dynamics [3] with
no use of absolute and static acoustic features such as spec-
trums. Although this framework posed a problem of so strong
invariance that two different words could be evaluated as the
same, our previous study successfully introduced good constraints
to the invariant features [4]. We realized the invariance only
with respect to speaker variability through Multiple Stream Struc-
turalization (MSS) [4]. In this paper, after introduction of our
proposed representation, we describe that it can be a good math-
ematical model of infants’ speech perception [5, 6, 7, 8], percep-
tual constancy of speech [9, 10, 11, 12], and Jakobson’s classi-
cal theory of relational invariance [13, 14, 15]. Next, we show
new experimental results using the proposed speech representa-
tion. The high robustness is verified again by using frequency
warped utterances, which simulate the utterances of very tall
speakers and very short ones. Further, we also investigate this
representation using a phoneme-balanced word set because, in
the previous study, we used only an artificial word set comprised
of vowel sequences such as /aeoui/. Results are very promising.

1. Introduction

Speech communication has several steps of production (encod-
ing), transmission, and hearing (decoding). In every step, acous-
tic and static distortions are involved inevitably by differences
of gender, age, microphone, room, line, auditory characteris-
tics, etc. In spite of these variations, human listeners can extract
linguistic information from speech so easily as if the variations
do not disturb the communication. One may hypothesize that
listeners adapt their internal acoustic models whenever either of
a speaker, a room, a microphone, or a line is changed. Another
may hypothesize that the linguistic information in speech can
be represented separately from the non-linguistic factors. Re-
cent studies of brain sciences proposed neuroanatomical mod-
els of the auditory cortex, where the linguistic features and the
non-linguistic features in speech are separately processed in dif-
ferent regions of the human brain [16]. These findings seem to
support the second hypothesis of human speech perception.
How can infants acquire the ability of robust speech pro-
cessing? To implement this ability on machines, engineers have
collected speech samples from a huge number of speakers and
trained speaker-independent acoustic models statistically. Are
those speech samples needed for infants? Recently, especially
in the field of artificial intelligence, there is a research trend to
focus on infants’ acquisition and development of cognitive abil-
ities [17, 18, 19]. One obvious fact is that a major part of the
utterances an infant hears are from its parents. After it begins to

talk, about a half of the utterances it hears are its own speech.
We can say definitely that the utterances an individual hears are
strongly speaker-biased unless he/she has speaking disabilities.
The variability problem should be solved not by collecting sam-
ples if one wants to realize a human-like speech processor.

How to separate the linguistic features and the non-linguistic
features, both of which are existing in a single speech stream?
How to implement the ability of robust speech processing on
machines, that infants acquire easily? Psychologically speak-
ing, the question we have is called perceptual constancy of speech.
Not only human perception of speech sounds but also that of
other stimuli such as colors and tones are very robust although
these stimuli inevitably vary due to various environmental fac-
tors. In the following section, we briefly introduce our proposal
of speaker-invariant representation of speech [1, 2] and, after
that, we discuss that it can be a good mathematical model of
infants’ speech perception, perceptual constancy of speech, and
Jakobson’s classical theory of relational invariance.

2. Speech representation based on the
complete topological invariance

Variability in speech and invariance in its perception [12], we
consider that this is one of the very classical and still open ques-
tions in speech science and engineering. Many studies proposed
models to explain this mystery. In [10] and [11], the models are
classified into two procedures, intrinsic (internal) and extrinsic
(external) normalization. While, in the former, the relationships
among formant frequencies (and fundamental frequency) in a
given speech sound is used for normalization, in the latter, those
among different sounds, e.g. the entire vowel system, are used
for normalization. In both approaches, however, an observation
is reformulated to have a different and normalized value.
Speaker difference is often modeled mathematically as space
mapping in studies of voice conversion. This means that if we
can find some transform-invariant features, they can be used as
speaker-invariant features. Here, an observation needs no nor-
malization. A critical question to note is how well the transform
can characterize real speaker variability. In the previous propos-
als of the invariant features [20, 21, 22], however, speaker vari-
ability was modeled simply as f =af (f=frequency, a=constant).
But many studies of speaker conversion adopted more sophis-
ticated transforms, indicating that f:a f cannot characterize
speaker variability well enough. Further, it should be noted that
all of these proposals tried to find invariant features in individ-
ual speech sounds, not in the entire system of given sounds.
Are there any invariant features with respect to any linear or
non-linear invertible transforms? The answer is yes. In [3], we
proved that f-divergence [23] between two distributions is in-
variant with any kind of invertible and differentiable transforms
(sufficiency). Further, we also proved that any invariant mea-
sure with respect to two distributions has to be written in the
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form of f-divergence (necessity), which is formulated as

faiv(p1(x), p2(x)) = ]{pz(m)g (ZEQ) de. (1)

Figure 1 shows two spaces (shapes) which are deformed into
each other through an invertible and differentiable transform.
An event is described not as point but as distribution. Two
events of p; and p2 in A are transformed into P; and P in B.
Generally speaking, the two spaces (shapes) are closed mani-
folds and the invariance of f-divegence is always satisfied [3].

Jaiw(P1(2,y),02(2,Y)) = faio(Pi(u,v), Pa(u,v))  (2)

Figure 2 shows a famous example of deformation from a mug
to a doughnut, often used to explain topology, where two shapes
are treated as identical if they are transformed continuously. So,
the mug and the doughnut in Figure 2 are identical topologi-
cally. Suppose that some events exist as distributions on the
surface of the mug. When the mug is deformed in varying de-
grees into the doughnut, f-divergences between any pair of the
events cannot change at any degree of the deformation. This
means that f-divergence-based distance matrix is completely in-
variant quantitatively. Individual events can change but their
system cannot change at all. Suppose that an event is an elec-
tron cloud and g(z) in Equation (1) is /. Then, the invariant
distance matrix becomes what is called overlap matrix in quan-
tum chemistry, which is one of the measures used to calculate
the geometrical shape of molecules or proteins [24].

In a series of our previous studies [1, 2, 3, 4], we have been
using Bhattacharyya distance (BD) as one of the f-divergence
measures. Figure 3 shows a procedure of representing an input
utterance only by BD. The utterance in a feature space is a se-
quence of feature vectors and it is converted into a sequence of
distributions through automatic segmentation. Here, any speech
event is modeled as a distribution. Then, the BDs are calculated
from any pair of distributions to form a BD-based invariant dis-
tance matrix. As a distance matrix can fix a unique geometrical
shape, we call the matrix as speech structure.

Once two utterances are represented as two speech struc-
tures, how should these be compared to each other? How to
calculate similarity between the two? We already showed a very
simple answer [2]. As a distance matrix is symmetric, we can
form a vector from the matrix, which is composed of all the el-
ements in the upper triangle of the matrix. This vector is called
structure vector, henceforth. As shown in Figure 4, similarity
between two structures is defined as the minimum of the to-
tal distance between the corresponding two points (events) after
one structure is rotated and shifted so that the two structures are
overlapped the best. Euclidean distance between the two struc-
ture vectors can approximate well the minimum of the total dis-
tance [2]. In a cepstrum space, rotation represents cancelation
of vocal tract length difference [25] and shift represents cance-
lation of microphone difference. This means that the structure
matching will give us an acoustic similarity score between two
utterances after speaker/microphone adaptation. But no explicit
adaptation is needed because an adaptation process is embedded
internally in the structure matching. In other words, it gives us
a useful mathematical shortcut. Chemically speaking, this sim-
ple and powerful matching scheme is called Root Mean Square
Deviation (RMSD) method [26]. It is often used to calculate
structural difference between two proteins without explicit esti-
mation of a mapping function to transform a structure into the
other. If absolute positions of individual events in a (parameter)
space are used as observation, however, the function has to be

Figure 4: Structure matching after shift and rotation
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Figure 5: Basic framework of structure-based word recognition

estimated. As far as we know, the conventional speaker adapta-
tion/normalization methods are based on this strategy and this
is why acoustic models have to be updated whenever either of a
speaker, a room, a microphone, or a line is changed.

Figure 5 shows the basic framework of isolated word recog-
nition based on speech structures. To convert an utterance into a
distribution sequence, the MAP(Maximum A Posteriori)-based
training procedure of HMMs is adopted. Then, the BD between
any pair of the distributions is obtained. After calculating the
structure, absolute properties of speech such as spectrums are
completely discarded. The right-hand side of the figure shows
an inventory of word-based statistical structure models (Gaus-
sians) for the entire vocabulary. The candidate word showing
the maximum likelihood score is a result of recognition.

In the following section, this framework is evaluated from
viewpoints of developmental psychology, cognitive science, and
linguistics. After that, some new experimental results are shown.



3. Psychological and linguistic
interpretation of the speech structure

3.1. Link to infants’ ability of oral communication

As discussed in Section 1, it seems that infants acquire the abil-
ity of robust speech processing by hearing strongly speaker-
biased utterances. And infants imitate their parents’ utterances
actively, called vocal imitation, but they don’t impersonate their
parents. Here, we have a question. What acoustic aspect of the
voices do infants imitate? One may claim that infants decom-
pose an utterance into a phoneme sequence and each phoneme
is realized acoustically by their small mouths. But researchers
of infant study deny this claim because infants don’t have good
phonemic awareness [6, 7]. Then, what is imitated acoustically?
An answer from infant studies is the holistic sound pat-
tern embedded in an utterance [6, 7], called otherwise as word
Gestalt [8] and related spectral patterns [S]. The holistic pattern
has to be speaker-invariant because, whoever speaks a specific
word to an infant, its responses of imitation are similar acousti-
cally. We consider that the speech structure in Figure 3 is math-
ematical and acoustic implementation of the word Gestalt [2].
The vocal imitation is rare in animals [28] and non-human
primates don’t imitate the utterances of others [27]. This perfor-
mance can be found in only a few species of animals, i.e. birds,
whales, and dolphins. But there is a critical difference between
humans and animals. The vocal imitation of animals is the imi-
tation of sounds [28]. Take myna birds for example. They imi-
tate the sounds of cars, dogs as well as human voices. Hearing
a myna bird say something, one can guess its human owner [29]
but cannot guess the parents of an infant by hearing its voices.
The ability of extracting an abstract and scale-invariant sound
pattern from a sound stream might be unique to humans.

3.2. Link to perceptual constancy of non-speech stimuli

As discussed in Section 1, not only speech sounds but also col-
ors, tones, and so forth are very variable actually but our per-
ception of these stimuli is robust and constant. Although we
perceive them through different physical media, it seems that
researchers found that a similar mechanism is working to cancel
static biases and realize the perceptual constancy [30, 31, 32].
Figure 6 shows the look of the same Rubik’s cube through dif-
ferently colored glasses. Although the corresponding tiles of
the two cubes have different colors absolutely, we name them
using the same labels. In contrast, although different colors are
perceived for the four blue tiles on the top of the left cube and
the seven yellow tiles on the right, when their surrounding tiles
are hidden, we can find easily that they have the same color (See
Figure 7). Absolutely different colors are perceived as identical
and absolutely identical colors are perceived as different.
Similar phenomena can be found in sounds. Figure 8 shows
two melodies. One is a transposed version of the other. If hear-
ers have relative pitch and can transcribe these two melodies,
their transcriptions using syllable names are identical between
the two (So Mi So Do...). The first tone of the upper and that of
the lower are different absolutely but they name these tones by
the same label. The first tone of the upper and the fourth of the
lower are identical absolutely but they claim that the two tones
are different. Absolutely different tones are perceived as identi-
cal and absolutely identical tones are perceived as different.
Researchers of psychology found that the perceptual con-
stancy of colors and tones occurs commonly based on contrast-
based information processing [30, 31, 32]. In other words, our
constant perception of colors and tones is guaranteed by the in-
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Figure 7: Perceptlon of colors without context
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Flgure 8: A musical melody and its transposed version

variant relations of the focused stimulus to its surrounding stim-
uli. As was found in ecology, the constant color perception oc-
curs even to butterflies and bees [33]. This color perception is
very old evolutionarily. In contrast, researchers of anthropol-
ogy found that the constant tone perception is difficult even for
monkeys. Non-human primates can hardly perceive the equiva-
lence between a melody and its transposed version [34]. Rela-
tive pitch perception is very new. Considering the discussion in
Section 3.1, animals seem to be good at dealing with visual de-
formation but poor at acoustic deformation. This is one of the
reasons why most of the research trials to teach a human lan-
guage to chimpanzees had to adopt visual signs, not oral ones.
The human voices are too difficult to deal with adequately [35].

3.3. Link to Jakobson’s classical theory of language

As is well-known, Jakobson proposed a theory of relational in-
variance, called distinctive feature theory. In [13], he repeat-
edly emphasizes the importance of relational and systemic in-
variance among speech sounds by referring to phrases of other
scholars such as Klein (topologist), Baudouin, and Sapir (lin-
guists). “The ‘given’ is a multiplicity and a transformational
group; the patterns to which this multiplicity is related have to
be investigated with respect to those properties which remain
unaffected by the transformations of the group.” “Physiologically
identical sounds may possess different values in conformity with
the whole sound system, i.e. with their relations to the other
sounds.” “We have to put aside the accidental properties of in-
dividual sounds and substitute a general expression that is the
common denominator of these variables.” A difference between
a language sound and an acoustic sound is that the former is
“placed with reference to other sounds”, i.e. “the relational gaps
between the sounds of a language”. Jakobson also denies a con-
cept of absolute invariance and a similar claim is found in [14].

In a classical study of phonetics, the importance of rela-
tional invariance was experimentally verified as for vowel per-
ception [9]. It is interesting that Lagefoged discussed a good
similarity between perception of vowels and that of colors.

In the following sections, new experimental results are shown
after solving two problems of our invariant speech structures.
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Figure 9: Multiple Stream Structuralization (MSS)

4. Two problems and their solution
4.1. Too strong invariance of speech structures

The proposed speech structure is invariant with any kind of in-
vertible transform. This led us to expect that two different words
can be evaluated as the same and this expectation was correct.
To solve this problem, we introduced good constraints [4] so
that we could obtain the invariance only with speaker variabil-
ity. Vocal tract length difference causes non-linear frequency
warping and [25, 36] showed that this warping can be modeled
in the cepstrum domain approximately as multiplying cepstrum
vector ¢ by matrix A (¢'=Ac). BD is completely invariant with
any kind of A and this invariance is too strong. A in [25, 36] is
a band matrix and what we want is the invariance only for band
matrices. This constrained invariance was obtained success-
fully by Multiple Stream Structuralization (MSS) [4]. Figure 9
shows its procedure. For a mean vector of a distribution of an
HMM converted from an input utterance, w consecutive cep-
strums form a sub-vector and w Acepstrums form another one.
Here, we have S sub-vectors (sub-streams) totally. Using a se-
quence of sub-vectors, a sub-structure is constructed. Geometri-
cally speaking, a speech structure in the entire space is projected
into sub-spaces and, in each sub-space, sub-structure matching
is done. The final similarity score is obtained by summation of
the scores of the individual sub-spaces. Detailed description of
MSS is found in [4], where it was tested with a set of vowel
sequence words spoken by adult speakers. In this paper, MSS is
tested with both of the vowel word set and a phoneme-balanced
word set generated through a much larger speaker variability.

4.2. Too high dimensionality of speech structures

The other problem is that the dimension of parameters is in-
creased with O(n?), where n is the number of distributions in
an utterance and the number of edges in a structure is ,C2 (See
Figure 3). Then, the total number of edges is S, C>. To reduce
the dimension and to increase discriminability simultaneously,
in this paper, widely-used Linear Discriminant Analysis (LDA)
is introduced in two stages. Figure 10 shows the procedure. Af-
ter MSS, LDA is carried out for each sub-stream (sub-structure),
which is the 1st stage LDA. W;(i=1...S) is a transform matrix.
Then, all the transformed sub-structure vectors are concatenated
to form a single integrated vector. This vector is transformed
again with Wy, which is the 2nd stage LDA. The resulting
vector is used for matching with pre-stored templates.

4.3. Use of inter-stream distance as additional feature

In Figure 10, the individual sub-streams are treated indepen-
dently. It is reasonable to consider that the use of distance be-
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Figure 10: Structure matching through 2-stage LDA

tween a pair of sub-streams (sub-structures) will improve the
performance. Then, another vector is formed for S sub-structures,
which is composed of sC> inter-sub-structure distances. This
new vector is concatenated to the integrated vector in Section 4.2.
The resulting vector is transformed in the 2nd stage LDA. The
effectiveness of Inter-Stream Distance (ISD) is examined shortly.

5. Isolated word recognition experiments
5.1. Vowel sequence words and phoneme-balanced words

We prepared two word sets. One is a vowel sequence word
set, where each word is a five-vowel sequence such as /eoiau/.
Since Japanese has only five vowels, the vocabulary size is 120
(=5Ps5). The other set is a Japanese phoneme-balanced word
set [37], which is often used in the Japanese ASR community
to verify the effectiveness of new techniques. The word length
in phonemes varies from 3 to 10 and the vocabulary size is 212.
Considering that vowel sounds are much more dependent on
speakers than consonants, it is reasonable to expect that the pro-
posed technique is more appropriate for the first word set.

5.2. Simulated speaker variability for robustness evaluation

With matrix A, various kinds of non-linear frequency warping
were applied to the word utterances. Considering the fact that
the tallest adult in the world is 257 cm high and the shortest
adult is 74 cm high, the warping was done to cover this body
height range. In real situations, however, we can hardly see
such tall or short speakers but we hear them on TV not rarely.
The voices of some animation characters are created by trans-
forming real human voices and children can understand their
utterances easily. What about the current speech recognizers?

5.3. Experimental conditions

The acoustic analysis condition for structure extraction and match-
ing in the case of unwarped (original) utterances is shown in
Table 1. For comparison, word-based HMMs were built with
the same training data. The condition for the HMMs is shown
in Table 2. In the case of warped utterances, however, the con-
dition was slightly changed. FFT-cepstrums (0 to 16 dim) were
used both for structures and HMMs. This is because Mel trans-



Table 1: Conditions for structures with unwarped utterances

sampling  16bit/ 16kHz (vowel word set)
12bit / 16kHz (balanced word set)
window 25 ms length and 10 ms shift

parameters Mel-Cepstrum (0 to 12) + A (0 to 12)
distribution 1-mixture Gaussian with a diagonal matrix
20 distributions for each vowel word (n=20)
25 distributions for each balanced word (n=25)
estimation MAP

Table 2: Conditions for HMMs with unwarped utterances

sampling  16bit/ 16kHz (vowel word set)
12bit / 16kHz (balanced word set)
window 25 ms length and 10 ms shift

parameters MFCC (1 to 12) + A (1 to 12) + AP
distribution 1-mixture Gaussian with a diagonal matrix
20 distributions for each vowel word (n=20)
25 distributions for each balanced word (n=25)
estimation ML

formation is just a frequency warping and corresponds to short-
ening the vocal tract length. The effect of Mel transformation is
expected to be cancelled due to the invariance of structures.

Both for structures and HMMs, the number of distributions,
n, was set to 20 for each vowel word and it was 25 for each bal-
anced word. For the vowel words, the number of speakers for
training was 8 (4 males and 4 females) and that for testing was
8 (other 4 males and 4 females). For the phoneme-balanced
words, 30 speakers (15 males and 15 females) were used for
training and other 30 speakers were for testing. For the former,
each speaker uttered the word set five times. Then, each struc-
ture was trained with 40 samples. For the latter, each speaker
uttered once. Each structure was built with 30 samples.

5.4. Results of the experiments

Figure 11 shows the performance for unwarped (original) utter-
ances of the two word sets. The upper figure is for the vowel set
and the lower is for the balanced set. In both figures, the X-axis
shows block size w. The baseline performance, which is ob-
tained by word-based HMMs, is 98.3% and 99.6%. As for the
speech structures, the performance with/without A parameters
is shown. With A, the number of streams, S, is 2(14—w) and,
without it, S=14—w. In MSS, the number of edges for each
sub-stream is 20C2=190 for the vowel set and it is 25C>=300
for the balanced set. In both cases, in the 1st stage LDA, the
number of parameters is reduced to 20. In the 2nd LDA, itis 119
and 211 (the vocabulary size —1). The best performance of the

structures is 98.9% for the vowel set (w=3 with MSS+LDA+A+ISD)
and is 96.4% for the balanced set (w=1 with MSS+LDA+A+ISD).

Figure 12 shows the performance for warped utterances.
All the results were obtained with MSS+LDA+A+ISD and w
varied from 1 to 16'. The X-axis represents warping param-
eter o [25, 36]. With positive/negative values of «, the vocal
tract length is shortened/lengthened. a=0.4 halves the length
and a=—0.4 doubles it approximately. HMM in the figures
means the performance of the word-based HMMs trained with
the same training data (unwarped utterances) that were used in
training the structures?. matched means the performance of
17 sets of word-based HMMs, which were separately trained
with each value of o and separately used for recognizing the

ICepstrum coefficients of 0-th to 16-th dimensions were used here.
2In this experiment, both the structures and the word-based HMMs
were trained and tested with FFT-cepstrums as explained in Section 5.3.
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Figure 12: Word recognition rates for warped utterances

warped utterances of the corresponding value of «. In other
words, matched shows the performance with no mismatch. We
expected that the performance of a single set of structures would
be comparable to that of the 17 matched sets of HMMs.

5.5. Discussions

In Figure 11, LDA is effective especially for the balanced set.
This is partly because speech structures are formed in a some-
what inappropriate way for words including speaker-independent
sounds, e.g. unvoiced fricatives and plosives. As for As, they
are harmful without LDA but, with it, they increase the perfor-
mance. ISD is more effective in the balanced set.

Figure 12 clearly shows the high robustness of structure-
based speech recognition to speaker variability. In the vowel
set, the performance of a single set of structures (w=16) is com-
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parable to or higher than that of the 17 matched sets of HMMs.

We carried out another experiment. Speaker-independent
triphone HMMs, which were trained with 4,130 speakers and
are used as the standard HMMs by the Japanese academic ASR
community [38], were tested against the utterances warped with
a=0.3. The language model was CFG allowing only the 120
words. The performance was 1.4%, by far lower than that of the
structures (91.0%, w=16), trained only with 8 speakers.

In the balanced set, the performance of structures is worse
than that of HMMs in the matched condition (av=0). In the mis-
matched conditions, however, the high robustness of structures
is shown (w=10, 13). In both of the word sets, although larger
values of w increase speaker-invariance, they induce misrecog-
nition. This tendency is very natural because a major part of
speaker difference and word difference are commonly attributed
to timbre (spectrum) difference. Speaker-invariance and word
discrimination are trade-off and w can control it.

Structure-based ASR is possible in other domains than cep-
strums. For example, spectrum-based structures are very feasi-
ble because a spectrum envelope is obtained by linearly trans-
forming cepstrums, i.e. FFT. We consider that spectrum-based
MSS structures are similar to modulation spectrums and RASTA.
All of these capture only the dynamic aspect of speech but only
the structure grasps it in a speaker-invariant way. This invari-
ance is obtained basically by removing the directional features
of a speech trajectory because they are strongly speaker-dependent
[25] and by extracting and modeling only the speech contrasts,
including temporally distant contrasts (see Figure 3).

6. Conclusions

In this paper, after briefly describing our previous proposal of
the invariant speech structure, we clarify the linkage of the struc-
ture to infants’ (and maybe human-unique) oral communication
ability, perceptual constancy of non-speech stimuli, and Jakob-
son’s classical theory of language sounds. Here, considering
new findings of animal sciences and evolutionary anthropology,
we discuss a difference in sound perception between humans
and animals. Animals are weak at acoustic deformation. After
that, isolated word recognition experiments are carried out with
the speech structures and the HMMs. The difference between
them is what is modeled acoustically. In the structures, speech
contrasts are modeled and, in the HMMs, speech substances are
modeled. Experimental results show merits and demerits of us-
ing the structures, i.e. the high robustness to speaker variability
but somewhat reduced discrimination among unvoiced conso-
nant sounds. We are interested in integrating both the models
for compensation because humans are very relative in their per-
ception but it is also true that we had evolved from animals.
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