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Abstract
This paper describes a new and improved method for the frame-
work of structure to speech conversion we previously proposed.
Most of the speech synthesizers take a phoneme sequence as
input and generate speech by converting each of the phonemes
into its corresponding sound. In other words, they simulate a
human process of reading text out. However, infants usually
acquire speech communication ability without text or phoneme
sequences. Since their phonemic awareness is very immature,
they can hardly decompose an utterance into a sequence of
phones or phonemes. In this situation, as developmental psy-
chology states, infants acquire the holistic sound pattern of
words from the utterances of their parents, called word Gestalt,
and they reproduce it with their vocal tubes. This behavior is
called vocal imitation. In our previous studies, the word Gestalt
was defined physically and a method of extracting it from an
utterance was proposed. We already applied the word Gestalt to
ASR, CALL, and also speech generation, which we call struc-
ture to speech conversion. Unlike a reading machine, our frame-
work simulates infants’ vocal imitation. In this paper, a method
for improving our speech generation framework using iterative
optimization is proposed and evaluated.

1. Introduction
Most of the speech synthesizers are text-to-speech converters,
which take a phoneme sequence as input and generate speech
stream corresponding to the sequence. To build a synthesizer,
symbol-to-sound mapping is learned from a speech corpus. If a
speech corpus of speaker A is used, the synthesizer learns A’s
voices and can read text out for him/her. A very good synthe-
sizer may be able to deceive speaker verification systems [1].

Developmental psychology tells that infants acquire spo-
ken language through imitating the utterances from their par-
ents, called vocal imitation. However, they never impersonate
their parents. It is impossible for infants to imitate their parents’
voices due to a large difference in the shape of vocal tubes.
To enable the vocal imitation in this situation, some abstract
representation of utterances should exist between infants and
their parents. One may claim that they communicate orally via
phonemic representation but researchers of infant study deny
this claim. This is because their phonemic awareness is very
immature and it is difficult for them to decompose an utterance
into a sequence of phonemes [2, 3]. What makes the vocal imi-
tation possible?

Researchers answer that infants extract the holistic sound
pattern from word utterances, called word Gestalt [2, 3] and
they reproduce it with their short vocal tubes. Here, we can say
that the Gestalt has to be speaker-invariant because, whoever
speaks a specific word to infants using different voices, it seems
that infants always extract the same Gestalt.

Figure 1: /aiueo/ utterances of a tall speaker and a short speaker.
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Figure 2: Speech sounds − vocal tube(size&length) = Gestalt.

What is the acoustic definition of the word Gestalt? Func-
tionally, it is a holistic and speaker-invariant pattern embed-
ded in an utterance. Recently, the third author showed a can-
didate answer mathematically and verified the validity of the
answer experimentally [4]. The proposed method of extracting
the Gestalt from an input utterance was used successfully for
ASR [5, 6] and CALL [7]. In addition, we applied the method
to speech generation, which modeled infants’ vocal imitation
well [8]. Our speech generation framework converts the Gestalt
back to speech sounds. We call it structure to speech (STS)
conversion. In the previous study, however, formulation and
implementation were insufficient for complete imitation of the
Gestalt. In this paper, by using iterative optimization so as to
satisfy the structural constraints better, a method for improving
our speech generation framework is proposed and evaluated.

In the rest of the paper, we explain the details of our pro-
posed framework. Section 2 describes what the word Gestalt
is and how it is defined mathematically. In Section 3, the STS
conversion framework and a proposed method to improve it us-
ing iterative optimization are shown. Section 4 reports some
experimental results of the method. Section 5 reports some re-
sults of subjective evaluation for our proposed method. Finally,
Section 6 concludes this paper.

2. Acoustic definition of the Gestalt
2.1. Discussions on the Gestalt from two viewpoints

Figure 1 shows two examples of /aiueo/. One is generated by a
tall speaker and the other by a short one. If an infant imitates
these utterances, it will generate very similar utterances because
the same Gestalt is considered to exist in both the utterances of
Figure 1. Then, if we try to define the acoustic definition of the
Gestalt, we have to find the speech features commonly existing
in both the utterances, i.e. speaker-invariant speech features.

Why are the voices of a speaker different acoustically from
those of another? This is simply because the default shape (size,
length, etc) of the vocal tube is different among speakers. Since
speech sounds are always generated from a vocal tube, their
acoustic features are inevitably influenced by the default shape
of the vocal tube, which is unique to the speaker. In this sense,
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Figure 3: Linear or non-linear mapping between two spaces.
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Figure 4: Invariant structuralization of an utterance.
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Figure 5: Feature extraction as HMM training for an utterance.

the Gestalt of an utterance is considered to be what remains after
subtracting features of the default vocal tube shape from all the
acoustic features of that utterance (See Figure 2).

2.2. Mathematical derivation of the Gestalt

In the above section, the Gestalt was considered from two
viewpoints. In this section, it is defined mathematically. In
speaker conversion studies of speech synthesis, it is often as-
sumed that speaker differences are well modeled as space map-
ping. Figure 3 shows an example of invertible mapping (linear
or nonlinear) between spaces A and B. In this figure the Gestalt
is regarded as mapping invariant feature.

Here, in Figure 3, every event is characterized not as point
but as distribution and event pi in A is mapped to qi in B. By
considering two mapping functions of f and g, i.e. x=f(u, v)
and y=g(u, v), we get the following;

qi(u, v) = pi(f(u, v), g(u, v))|J(u, v)|.
J(u, v) is Jacobian. The Bhattacharyya distance (BD) is one
of the well-known distance measures between two PDFs and
we can prove that BD is invariant with any kind of invertible
mapping functions between two spaces;

BD(p1, p2) = − log

Z
©
Z p

p1(x, y)p2(x, y)dxdy

= − log

Z
©
Z p

p1(f(u, v), g(u, v)) · p2(f(u, v), g(u, v))|J |dudv

= − log

Z
©
Z p

p1(f(u, v), g(u, v))|J | · p2(f(u, v), g(u, v))|J |dudv

= − log

Z
©
Z p

q1(u, v)q2(u, v)dudv = BD(q1, q2).

Based on this invariant feature, we introduced a transform-
invariant representation of an utterance, shown in Figure 4. A
sequence of cepstrum vectors is converted into a sequence of

+ =

Figure 6: Structure + vocal tube(size&length) = speech sounds
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Figure 7: The conventional framework for analysis-resynthesis
and the proposed one with three separate kinds of information.

distributions through merging similar frames and estimating a
distribution for the merged frames. After that, every sound con-
trast between any two distributions, even including temporally
distant ones, is calculated as BD. An utterance is represented as
a transform-invariant distance matrix, which can characterize a
geometrical structure uniquely. We call this matrix-based repre-
sentation as structural representation and believe that the struc-
ture is the Gestalt. In [5], this procedure was implemented as
MAP-based HMM training for an utterance, shown in Figure 5.
Here, the number of distributions is often larger than that of
phonemes existing in the utterance. We already applied this
representation in ASR [5, 6] and CALL [7] successfully.

Figure 4 shows that the structural representation of an ut-
terance is obtained by extracting speech contrasts (dynamics)
only and discarding all the absolute and static features. Putting
it another way, only articulatory movements are focused on and
the articulatory features corresponding to the static and default
shape of the vocal tube is ignored completely (See Figure 2).

The structure (the Gestalt) is so abstract a representation of
an utterance that, with the structure only, speech sounds cannot
be recovered or determined at all, shown in Figure 4. To de-
termine and locate the sounds of a given structure, what should
be additionally needed? Looking at Figure 2, we can say that
the static and default shape of the vocal tube is required for the
Gestalt to be realized acoustically. Figure 6 explains this pro-
cess conceptually and, in the following section, this process of
structure-to-speech conversion is implemented on computers.

3. Structure to speech conversion
3.1. Analysis-resynthesis with three kinds of information

Recently, analysis-resynthesis techniques are often utilized to
modify speech. The top figure of Figure 7 shows the conven-
tional framework of analysis-resynthesis. Speech features are
divided into two kinds, segmental and prosodic. The former
corresponds to the spectral envelope, which transmits linguistic
as well as non-linguistic (speaker) information in speech. The
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Figure 8: Search for the next target under structural constraints.

latter corresponds to fundamental frequency, power, and dura-
tion, which are said to carry para-linguistic information.

With the structural representation, we can modify the above
framework into three pathways; three kinds of features for three
kinds of information. The speech structure only captures spec-
tral dynamics in an utterance and the proposed framework con-
siders that it corresponds to linguistic information. As for non-
linguistic (speaker) information, we consider that spectral bias
transmits it to hearers. Using this bias feature, the structure can
be located absolutely in an acoustic space, shown in Figure 4.
Some readers may wonder whether words can be identified
only with speech dynamics. To this question, our previous
works showed that the answer is yes. With the speaker-invariant
speech structures, speaker-independent speech recognition was
realized successfully only with several training speakers [5, 6].
Further, the proposed structural representation was applied to
dialect-based speaker classification of Chinese [9]. The speak-
ers are classified successfully only based on their dialects (lin-
guistic information), not based on their gender and age.

In the proposed framework, to generate speech sounds, all
the three kinds of information or features have to be prepared.
As told above, the default shape of the vocal tube, i.e. speaker
identity, is translated acoustically as spectral bias. Then, if the
center of a given structure of Figure 4 is located absolutely in
an acoustic space, can we hear all the sounds from the structure
subsequently? The answer is no because difference in the vocal
tract length rotates a given speech structure [10]. This means
that, to locate the structure completely, several points on the
structure have to be determined absolutely in advance.

3.2. Searching a cepstrum space for target speech events

Here, conversion from a given structure to a speech sound se-
quence is implemented as follows. Several points on a given
structure are fixed absolutely in advance. This step means that
the default shape of the vocal tube is determined. Then, using
these points as initial conditions and the structure (distance ma-
trix) as constraint conditions, all the other points on the structure
are searched for in a cepstrum space. Figure 8 shows how to
search for the next target using 4 already determined events and
structural constraints. In the case of infants’ vocal imitation, the
structural constraints are given from their parents. About the
initial conditions, infants may use some speech sounds which
they actually generated through vocal communication or play-
ing with their parents.

Solution

Figure 9: Solution of the search problem. In this figure, the
intersection of three ellipses becomes the solution.

3.3. Solving the search problem

How do we solve this searching problem? When the two dis-
tributions are Gaussian, i.e. p1(x) = N (μ1, 1) and p2(x) =
N (μ2, 2), BD is formulated as follows,

BD(p1(x), p2(x))

=
1

8
(μ1 − μ2)

T V −1
12 (μ1 − μ2) +

1

2
ln

|V12|
| 1| 12 | 2| 12

, (1)

where V12=
Σ1+Σ2

2
. In this case, BD is invariant to any com-

mon linear transform. Now let us consider an n-dimensional
cepstrum space. Suppose that 1, 2 and μ2 are already de-
termined speech features and that we have to locate μ1 in the
cepstrum space using Equation 1 as structural constraint. In this
case, the locus of μ1 is found to draw a hyper-ellipsoid, ellipse
in an n-dimensional space. From this fact, we take the follow-
ing procedure to solve the search problem.

1. From the distance matrix, equations of hyper-ellipsoid,
e.g. Equation 1, are obtained.

2. Vectors of the initial conditions are substituted to the
equations obtained in 1.

3. The locus of the target event vector μ1 is drawn by the
equations obtained in 2.

4. The intersection of the loci drawn in 3 is obtained and
this intersection will give us a solution.

Here, we give an example of a two dimensional case. Speech
events A=N (ca , a) and B=N (cb , b) are prepared for ini-
tial conditions, where covariance matrices of A and B are sup-
posed to be diagonal. μ of speech event C=N (μ, ) is a target,
where is also diagonal and given. When BD between A and
C is named as BDa and BD between B and C is named as
BDb, the structural constraints are translated into a simultane-
ous equation as(

BDa−εa =(μ − ca)tA(μ − ca)

BDb−εb =(μ − cb)
tB(μ − cb),

(2)

where ()t is transpose of a vector, ε represents the second term
in Equation 1 and A and B are

A=
1

4
( a + )−1, B =

1

4
( b + )−1. (3)

In a two dimensional case, solving Equation 2 corresponds to
obtaining the intersection of two ellipses geometrically. Gen-
erally speaking, the number of intersections of two ellipses is
more than one in a two dimensional space. Hence, to determine
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(a): resynthesized speech of M1 (b): resynthesized speech of F2

(c): synthesized speech with M1’s structure and
F2’s initial conditions, without iteration
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(d): synthesized speech with M1’s structure and
F2’s initial conditions, with 10 iterations

Figure 10: Spectrograms of resynthesized speech (a and b) and synthesized speech (c and d); (a) M1 (father), (b) F2 (girl), (c) M1’s
structure + F2’s initial conditions (no iteration) and (d) M1’s structure + F2’s initial conditions (10 iterations).

only one intersection for the target speech event, at least one
more event is needed as initial condition. By expanding this
discussion to an n-dimensional space, we can say that we need
at least n+1 events as initial condition. Figure 9 shows a two
dimensional case. The target event is obtained as intersections
of three ellipses, whose origins are speech events given as initial
conditions.

3.4. Iterative optimization

In the previous section, we explained a basic concept of solving
a search problem for STS. However in the above formulation,
each target was estimated independently. That is to say, the
searching in the previous section does not give us the targets
that can satisfy structural constraints fully. Now we assume that
one utterance is composed of N speech events, among which, n
events are considered as initial conditions and the remaining m
events as targets (m+n=N ). The number of unique elements of
distance matrix for N events is NC2(= mC2+nC2+mn). The
previous searching method considers only the mn elements of
distance matrix as constraints. Considering the other elements
of distance matrix (mC2 + nC2), we propose an iterative op-
timization method using already estimated events in the previ-
ous process as initial conditions again. A procedure of our new
method is as follows.

1. Using the previous procedure, m targets are estimated by
n initial conditions and structural constraints.

2. From the estimated m events, one event is selected. By
regarding the remaining m−1 events as initial conditions,
this event is re-estimated using its structural constraints
to the other m−1 events. This process is repeated until
all the m events are re-estimated.

3. From the whole N events (N = m+n), one event is
selected and is re-estimated by the other N − 1 initial
conditions and the structural constraints. This process is
repeated until all the N events are re-estimated.

4. Step 3. is repeated 10 times in this paper.

4. Experiment
4.1. Experimental conditions

For evaluation of the proposed framework, experiments using
utterances composed of Japanese 5 vowels (5! = 120 words)
were carried out. We used speech samples from 6 speakers (M1,

M2 and M3 as male, and F1, F2 and F3 as female). Utterances
of M1 and F1 were used to extract the word Gestalt, which was
used as structural constraints when searching for targets.

For converting a spectrum sequence to a cepstrum se-
quence, STRAIGHT analysis [11] was adopted and a sequence
of 40 dimensional vectors was obtained. For converting a cep-
strum sequence to a distribution sequence, MAP-based HMM
parameter estimation was adopted since all the distributions had
to be estimated from a single utterance. Then, an utterance was
converted into a sequence of 25 diagonal Gaussians. In addi-
tion, parameter division proposed in [5] was carried out. From a
single speech stream, 20 multiple sub-streams were obtained. A
structure was extracted from each two-dimensional sub-stream.
The searching problem was solved in each sub-space.

The other utterances from M2, M3, F2 and F3 (henceforth
target speakers) were used as initial conditions. After extract-
ing prosodic features from these utterances with STRAIGHT,
the utterances were converted into a sequence of 25 diagonal
Gaussians. After that, 5 mean vectors (3rd, 8th, 13rd, 18th, and
23rd ones in the 25 Gaussians) were extracted and used as a
part of initial conditions. In this experiment, all the covariance
matrices of target events were given and also used as initial con-
ditions. With these initial conditions of the target speakers and
the structural constraints from M1 and F1, the remaining mean
vectors were treated as targets and they were searched for. The
number of iterative calculation that we proposed was changed
from 0 to 10.

Finally using the prosodic features extracted above and a se-
quence of obtained distributions, utterances of the target speak-
ers were synthesized. When we compare this experiment with
infants’ vocal imitation, M1 and F1 is a father and a mother, and
target speakers are sons and daughters, who try to extract the
word Gestalt in their parents’ utterance and reproduce it acous-
tically using their short vocal tubes.

4.2. Results

Figure 10 shows (a) the spectrogram of a resynthesized utter-
ance of M1 (father), (b) that of a resynthesized utterance of F2
(girl), and (c) that of a synthesized utterance with the girl’s ini-
tial conditions (the girl’s imitation through the father’s Gestalt).
In addition, (d) is the spectrogram of a synthesized utterance af-
ter 10 times iterative optimization. All of them are utterances of
/aiueo/. In (c) and (d), the spectrum slices in five square boxes
were given as initial conditions. When we compare (c) and (d)
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Figure 11: The number of iteration vs. structural distortion; The
conditions are the same as used in Figure 10.

with (a) and (b) visually, we can find that spectrograms of (c)
and (d) are closer to that of (b). In addition, comparing (d) with
(c), we can find formant peaks are clearer in (d). It implies the
speaker identity is well realized in (c) and (d), furthermore, iter-
ative calculation properly improves the sound quality of synthe-
sized speech. By preliminary listening, these were easily veri-
fied. Although the next section reports the detailed results of
subjective evaluation, so far we can say that structure-to-speech
conversion certainly works and that iterative optimization im-
proves our previously proposed method.

Figure 11 shows a difference between the structure ex-
tracted from M1’s utterance and the structure composed of the
estimated speech events of F1 through iterative optimization. A
structural difference is defined as euclidean distance between
two distance matrices [4]. The graph is drawn as a function
of the number of iteration (i). The experimental conditions are
the same as used in Figure 10. In Figure 11, i = −1 means
the conventional search method in [8], and i = 0 means the re-
sult of Step 2 in the procedure of iterative optimization. From
Figure 11, we can find that the proposed iterative optimization
contributes well to optimal searching constrained by the word
Gestalt.

5. Subjective evaluation
5.1. Conditions

Three types of listening tests were carried out to evaluate intelli-
gibility, naturalness and speaker identity of the speech samples
generated by our method. (a) dictation test, (b) opinion score
test and (c) speaker identity test were done. The purpose of (a)
is to check whether our method captures linguistic information
properly. (b) is for checking naturalness of the samples gen-
erated by our method. (c) is for checking whether the initial
conditions can reproduce the speaker identity well.

Test (a) was carried out using 4 male subjects. Sample stim-
uli for evaluation were generated under different conditions.
The conditions are in terms of (1) who gives the initial con-
ditions and who gives the structural constraints (2 parents × 4
children) and (2) the number of iterative optimization (i=-1, 2
and 10). Totally, under 24(=8×3) conditions, our proposal was
tested. 60 samples were presented to the subjects for each con-
dition, namely 1,440 stimuli in total. In addition, 240 samples
of resynthesized speech were also evaluated as reference. Sub-
jects were instructed to transcribe each sample by using vowel
symbols. In this test, they were told that each sample was com-
posed of Japanese 5 vowels, i.e. word perplexity is 5!=120.
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Figure 12: Results of Test (b) on naturalness. Score 5 means
the most natural.
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Figure 13: Results of Test (c) on speaker identity.

Test (b) was carried out with 13 subjects (10 males and 3
females). All the samples for evaluation were /aiueo/ generated
under similar conditions to those in Test (a). The conditions are
in terms of (1) 2 parents × 4 children and (2) the number of
iteration (i = -1, 0, 2, 5, 8 and 10). i = -1 means no iteration
and i =0 means Step 2 in the procedure of iteration. 1 sample
was prepared for each condition, namely 48 samples in total.
In addition, 20 samples of resynthesized speech were evaluated
as reference. Each subject was asked to judge the naturalness
of each sample by a score from 1 to 5, where 1 is the most
unnatural and 5 is the most natural.

Test (c) was carried out with the same subjects of the Test
(b). Samples were /aiueo/ under the same conditions as those
of Test (a). Test (c) was a paired comparison using a reference
stimulus. Each subject first listened to a resynthesized speech
sample of the target speaker as reference, and 2 samples of dif-
ferent conditions where only the number of iteration is different.
After that each subject judged which sample was more similar
to the reference sample with respect to speaker identity.

5.2. Results

Table 1 shows the results of Test (a). In word accuracy (1), if a
given word sample is perceived correctly at least by 3 subjects
out of 4, the sample is counted as correct. In word accuracy (2),
if 4 or 5 vowels in a given word sample are perceived correctly
by more than 2 subjects out of 4, the word sample is counted as
correct. We want to see whether subjects can at least extract a
holistic pattern from a given sample, which may include a lo-
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Table 1: Results of Test (a): M→F means a speaker who gives the structural constraint is a male and a target speaker is a female. i is
the number of iteration. Accuracy rates in bold face are the highest performance.

Word accuracy (1) [%] Word accuracy (2) [%] Vowel accuracy [%]
i=−1 i=2 i=10 i=−1 i=2 i=10 i=−1 i=2 i=10

M→M 80.0 73.3 78.3 80.8 84.2 81.7 88.5 90.1 90.3
M→F 50.8 57.5 43.3 59.2 61.7 52.5 79.2 81.5 75.6
F→M 64.2 64.2 64.2 66.7 69.2 65.8 83.8 85.0 85.1
F→F 61.7 80.8 70.0 70.0 84.2 73.3 83.6 92.1 85.8

average 64.2 68.8 64.0 69.2 74.8 68.3 83.7 87.2 84.2

cal error in word perception. This is why word accuracy (2) was
prepared additionally to word accuracy (1). From Table 1, word
accuracy (1) sometimes does not improve with iteration, e.g. the
case of M→M. In word accuracy (2), however, we can say that
the iterative optimization improves speech intelligibility. About
75% of the samples are perceived correctly and holistically. In
addition, from a viewpoint of vowel accuracy, the iterative op-
timization contributes to improvement of speech intelligibility.

Figure 12 shows Mean Opinion Scores (MOS) of Test (b).
The results are divided into the case that a speaker of struc-
tural constraints and a target are of the same gender (M→M
and F→F in Table 1), the case that they are of different gender
(M→F and F→M in Table 1), and total. In every case, we can
find that iterative optimization improves naturalness of speech
sounds. Final improvements after 10 iterations are about 1.2
points in the within-gender case, about 0.8 points in the cross-
gender case, and totally about 1.0 points.

Figure 13 shows preference scores of Test (c). The results
are divided similarly to Test (b)’s results. From Figure 13, we
can find that the proposed method also makes speaker identity
of speech samples closer to target speaker identity. However,
in the case of cross-gender, preference score decreased in the
case after 10 iterations. It means there is the optimal number of
iteration for cancelling the speaker differences properly.

6. Conclusions
We have proposed a new method for the framework of structure
to speech conversion. In the framework of structure to speech
conversion, the word Gestalt is extracted from an input utter-
ance and reproduced acoustically with some initial conditions
given. This framework can simulate infants’ vocal imitation and
learning. Our proposed method in this paper has improved all
of speech intelligibility, naturalness and speaker identity. One
of reasons of these improvements is that discontinuity between
speech events is cancelled by considering all structural con-
straints properly. However, in Figure 13, excessive iterative op-
timization sometimes causes the degradation of quality. In this
case, over-fitting to structural constraints and over-smoothing
may occur. For more improvements, the optimal number of it-
eration has to be estimated in a future work. We’re also planning
to integrate the prosodic aspect into the framework.

To conclude this paper, we want to discuss our STS conver-
sion from anothor viewpoint. This paper tries to implement the
process of infants’ vocal imitation on machines. Infants never
imitate the voices but extract the word Gestalt and reproduce it
acoustically with their vocal tubes. It is known in animal sci-
ences that the vocal imitation or vocal learning is found only in
a limited kinds of animals. For example, non-human primates
do not perform the vocal imitation. It is also known that the an-
imals which do the imitation imitate the voices themselves. It is

only humans that do not imitate the voices. As far as we know,
all the speech synthesizers imitate the voices, i.e. animal-like
imitation, and our synthesizer is the only one which performs
infant-like imitation.
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