o000 0O0oDoooooo
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

Jodouoboobooboubobooboobon

oooo
TECHNICAL REPORT OF IEICE.

H of oo oof oo oof

t0000000000D0o0oO O113-8s6 DO OOO 7-3-1
E-mail: {qiao, dsk_saito, mine}@gavo.t.u-tokyo.ac.jp

ooo0d boobooooboboooboboobooboobOooOoOobOOoOobDOobOOOobOOMPLROOOODOOOMPLRO
gbhoboobboobooboobbuooboobboboboobooboboobooboobboobuobaa
oboooooMPLROOOODOOOOOOOOODOODODOODODODOOOOOOO MPLRODODOODOODO
000o00o000o0o0U0oo0o0oo0o0Uoo0o0oooUoooooDooGMMOODOOOOOO 1,210
MPLROOOOOOOOOODOOMPLROOODOOOOOOOGMMOOOODOOOOOOODOODOOOOOO
Oooluoo0o0oMPLROOODOOOOOOOODOOO0OOOOOOOOOOOODOOOODO0ODOOOOOOO
0000000000 MPLRO 200000000000 0COOOOOOOOOOOOOOOOOOOOODOOO
coooeGMMUOOOODOOOOOOODOOOOOOOODODOOOOODODOOOOOOOOMPLROODODO
oooobooooooobooon

00000 OO0O0obOOobOooOooboooobOobOooboobooon

Mixture of Probabilistic Linear Regressions for Voice Conversion

Yu QIAOf, Daisuke SAITO', and Nobuaki MINEMATSU'

1 Grad. School of Engineering, Univ. of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan

E-mail: {qiao, dsk_saito, mine}@gavo.t.u-tokyo.ac.jp

Abstract This paper introduces a model of Mixture of Probabilistic Linear Regressions (MPLR) to learn a map-
ping function between two feature spaces. The MPLR consists of weighted combination of several probabilistic linear
regressions, whose parameters are estimated by using matrix calculation. The mixture nature of MPLR allows it to
model nonlinear transformation. 00 he formulation of MPLR is general and independent of the types of the density
models used. Two well-known GMM-based mapping methods for voice conversion [1], [2] can be regarded as the
special cases of MPLR. This unified view not only provides insights to the GMM-based mapping techniques, but
also indicates methods to improve them. Compared to [1], our formulation of MPLR avoids solving complex linear
equations and yields a faster estimation of the transform parameters. As for[2], the MPLR estimation provides a
modified mapping function which overcomes an implicit problem in [2]’s mapping function. We carried out experi-
ments to compare the MPLR-based methods with the traditional GMM-based methods [1], [2] on a voice conversion
task. The experimental results show that the MPLR-based methods always have better performance in various
parameter setups.
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sion [1], [2].
ture of Probabilistic Linear Regressions (MPLR) for learn-

. In this paper, we propose a model called Mix-
1. Introduction

To find a mapping function between two feature spaces is
a fundamental problem in many signal processing and pat-
tern recognition problems. In speech engineering, a map-
ping function from the cepstrum feature of a source speaker

to that of a target speaker can be used for voice conver-

ing the mapping function between two feature spaces. The
MPLR is made up of several Probabilistic Linear Regressions
(PLR), whose parameters can be optimized through matrix
calculation. The mapping function of MPLR is a weighted

summation of the PLRs, where the weights depend on input
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samples. The MPLR is based on a similar linear calculation
to PLR, however, it can deal with nonlinear transformations
due to its mixture nature. Moreover, MPLR has such a flex-
ible form that it doesn’t need to specify the form of the
density function.

We find that both of the two GMM-based mapping tech-
niques [1], [2], which have been widely used for voice con-
version, can be related to our MPLR. The difference be-
tween them comes from the density model and the hidden
parameters used for parameter estimation. This unified view
(MPLR) not only yields insights to the GMM-based map-
ping methods but also provides methods to improve them.
As for [1], the formulation of MPLR yields a faster and more
direct calculation of the mapping parameters without solv-
We find the method of [2]

includes an implicit problem in its mapping function, and

ing complex linear equations.

introduce a modified method to estimate the mapping pa-
rameters based on MPLR. We conduct comparison experi-
ments between the MPLR-based methods and the traditional
GMM-based methods on a voice conversion task. The re-
sults show that our MPLR-based methods always have the
least cepstrum distortion in various conditions. The formula-
tion of MPLR is general, and may have applications in other
tasks, such as speech alignment and speaker adaption.

It is noted that, although similar in names, our method
is different from the Mixture of Linear Regressions (MLR)
proposed in the context of statistics[3],[4]. Different from
our method, MLR doesn’t make any use of the density of
the source data. Actually, it can be seen as a special exam-
ple of MPLR if we assume all the source samples have equal
probability and consider density models of mapping errors
during training. Our method is also related to Maximum-
likelihood stochastic-transformation (MLST) [5], which was
proposed for speaker adaption of HMM. However, different
from MPLR, MLST is not a regression model and is limited
to Gaussian or Gaussian mixture distributions. Moreover,
one of the important characteristics of MPLR is that the
prior probability of each PLR is estimated from the source
vector; while in MLST, the prior probability is calculated as
the joint probability of mixture index and LR index.

2. Regression

Generally speaking, estimation of a mapping function can
be seen as a regression problem [6], [7] from a source space
to a target space. Let x denote a source vector with di-
mensionality n, and y denote a target vector with dimen-
sionality m. The objective of regression is to estimate a

regression/mapping function,

y' = f(a). (1)

The regression analysis has been studied long and widely and
has important applications in machine learning and pattern
recognition.

Assume we have a set of training samples {z;, yi}le. Let
X = [z1,%2,...,xz7] and Y = [y1,y2,...,yr]. By minimizing
the least squared error, the optimal mapping function can

be estimated by
argmin 3 [yi — f ()" (2)

2.1 Linear Regression
To begin with, assume f has a linear form, the problem

reduces to a linear regression [6],
yi = Bx; +b. (3)

In this paper, we only consider unbiased linear regression,
that is, Fly] = BE|[z] + b. With argument vector &; =
[J:ZT, l]T7 Eq. 3 can be simplified to

y; = A (4)
Minimizing the summation of squared error (MSE), we have

. o A 2
argmA}nZkyl A (5)

If we set p(yi|2:, A) = (2702) ™™/ exp(— 525 |y — Az[?), the
above Eq. 5 is essentially the same as the following maximum

likelihood estimation

arg mj?pr(yAxi, A). (6)

Let X = [%1,Z2,...,21]. The optimal A for Eq. 5 can be

calculated by using matrix calculation,
A=YXT(XX")™, (7)

where *T’ denotes matrix transpose.

MSE of LR is an unbiased estimator. And according to
Gauss-Markov theorem [7], among all the unbiased linear
transformations, the MSE transformation of Eq. 5 has the
minimum variance. For this reason, it is sometimes called
the best linear unbiased estimator (BLUE).

2.2 Probabilistic Linear Regression

The MSE objective function Eq. 5 of LR treats each
training sample equally. In Probabilistic Linear Regression
(PLR), we consider weight p; for x;. Note in this paper, p;
has not to be always probability of z;, and p; can be con-
ditional probability of transform A given xz;. The optimal

objective of PLR estimation is formulated as,
argmjani\yi — Adq)?. (8)
7
Define a diagonal matrix P, whose diagonal is [p1, p2, ..., p1].
The optimal A for PLR can be calculated by,

A=yYPX"(XPX")"". 9)



3. Mixture of Probabilistic Linear Re-
gressions

Although LR is simple, many real problems include non-
linear transformations which cannot be approximated well
by a linear one. Perhaps the simplest idea to deal with non-
linear transformation is to divide the feature space S into
several blocks and calculate a linear transformation for ev-
ery block (Fig. 1). According to Taylor theorem, there must
exist a good linear approximation for each block if the divi-
sion is fine enough. Statistically speaking, division of S can
reduce bias of the estimated mapping. However, the hard
and deterministic division of the feature space into blocks
can be difficult. Especially, when the feature space has high
dimensions and the number of training samples is limited,
it is usually difficult to obtain enough training samples for
each block. For this reason, instead of hard division of the
feature space, we consider a probabilistic and soft division,
which leads to the following Mixture of Probabilistic Linear
Regressions (MPLR).

3.1 Formulation of MPLR

This section describes the formulation of MPLR and its
relation to GMM based voice conversion techniques. Let us
consider K ‘virtual spaces’ {Si}5; (Fig. 2), each of which
has the same region as the source feature space. We use
p(z|k) to represent the density of = in virtual space Si. The
densities {p(z|k)} yield information for soft division. Then
we estimate a PLR y = A& (Ar denotes the transformation
matrix) for Si. The final regression function is a weighted
combination of all PLRs, where the weights are given by
posterior probability p(k|x), which is actually a conditional

probability of S given z. Formally, we have
K
y' = FupLr(z) = Zp(kkr)Akfc (10)
k=1

Given density p(z|k), posterior p(k|z) can be calculated by
using the Bayes’ theorem,

wip(z|k)
_—, (11)
>, wip(xlg)
where wy, = p(k) denotes a prior probability of the k-th PLR
or Sg, and >, w, = 1.

The diagram of MPLR is depicted in Fig. 2. MPLR avoids

the hard division of feature space, and makes effective use of

p(klz) =

all training data for estimating the transformation parame-
ters of each PLR. It is noted that MPLR doesn’t make any
special assumption on the form of p(z|k), it can be Gaussian,
Gaussian mixture, uniform, Gamma etc.. And it doesn’t in-
clude any specification on how p(z|k) should be estimated.
Just take two examples. We can estimate p(z|k) from x only

using certain mixture models. Or we can calculate the joint
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probability p(z,y|k) at first and then estimate p(z|k) as a
marginal probability p(z|k) = [ p(z, y|k)dy. Note these two
estimations will practically lead to different p(z|k) as the
second density estimation accounts for the joint relation be-
tween x and y. This flexibility allows us to design a specific
form of p(x|k) for a certain problem.

Generally, the calculation of p(z|k) and p(k) is a den-
sity estimation problem, which has been widely addressed
in statistics and pattern recognition. As we consider mix-
ture model here, EM algorithm provides an effective tool
for estimation [8]. So in the next, we assume that p(z|k)
and p(k) are given, and our problem reduces to estimate the
transformation matrix Ax of PLR in Eq. 10 from training
data set {xi,yi}le. For convenience, let p; x = p(x;|k) and
i = plklr) =
as diag(Rk) = [F1,k, T2,k -y T1,k)-

. Define matrix Rj with diagonal



The MSE estimation of mapping function Eq. 10 is defined

as,
arg min ; lyi — Fuprr (2)]?
:Z lyi — ZTi,kAkfi|2
i k
=D 1D rikly — Arda)[, (12)
ik
where »°, 7, = 1. This is a linear optimization
problem which can be solved directly. Let X, =
[r1,681, T2,k &2, ..., T1,&1] and X = [X?,)A(QT,,X};]T The

optimal transform matrices {A}} for Eq. 12 are given by
[A}, A5, ..., Ak] = YXT (XX, (13)

However, this is computationally expensive, since matrix X
has a size K(n + 1) x I. Another problem of Eq. 13 is
that each PLR can be biased. In other words, the following
formula may not hold for Eq. 13,

Z””“y" = Zm,kACCAi. (14)
i @

Here we consider a fast and approximate calculation. Tak-

ing 1% as a weight for z; in Sj, we can approximate Eq. 12

agl]ll]
g min Y rily - A (15)
LR

This can be further decomposed into K linear optimization

problems for each Ay,
argHAianm,Myi —Akgfi|2. (16)

Recalling the optimal solution for probabilistic linear
transformation in Eq. 8 and Eq. 9, we calculate optimal

Ay, for Eq. 15 as,
Ar = YR XT(XR, XT) 1. (17)

The optimal Aj depends on training data {z;,v;} and 7k,
whose values can be estimated from the density models
p(z|k) and p(k). Note that the PLR given by Eq. 17 is
always unbiased. Although Eq. 17 is only an approximately
optimal answer for Eq. 12, we found that the approximate
Eq. 17 has comparable performance with Eq. 13 in our ex-
periments. We think this is because Eq. 13, which directly
optimizes Eq. 12, may overfit the training data, and can lead
to biased PLRs.

In the next, we will decompose transformation Axz (Eq.

00 100 According to Jensen’s inequality, 3°, (witr)? < 32, wity?, for
> wir = land 1 2 wy 2 0. Therefore Eq. 15 yields an upper bound-
ary of Eq. 12.

17) into another familiar form by using the conditional means
and covariance matrices. Firstly, define the conditional mean

of z and y on Sy as,

_ 1
TR, = Epkjo)z] = N > vk, (18)
_ 1
Ur, = Epeia) ly] = Ne Z"'i,kyiy (19)

where N = Y. r; « is used for normalization. Since our PLR
is unbiased, we have ygr, = Ak;:Rk. Then define the condi-
tional covariance matrix and correlation matrix of  and y

on Si as,
Vite = Bpilo) [(@ = Bpuia) [21) (@ — Bpuja) [2])"]
= e - aw )@ - o)L (20)
Ve = Byl (Y = Epgrio) [9]) (@ — Bpiriay [2]) ]
— Nikzri,k(yi — gr)(zi — )" (21)
Using Eq. 18, Eq. 19, Eq. 20, and Eq. 21, we obtain
Aid = gr,, + VI (VD)™ (2 — Zry,). (22)

In the remainder of this section, we show both of the two
GMM-based map-
ping [1] and GMM of joint vector density based mapping

well-known voice conversion methods:

method [2] can be regarded as the special cases of MPLR,
which differ from each other in how to model densities and
how to calculate {r; 1 }. Note that this unified view by MPLR
not only provides insightful understanding of the two meth-
ods, but also leads to techniques to improve them, for which
we give the details later.

3.2 Connection to GMM based mapping meth-

ods [1], [2]

The GMM-based mapping (voice conversion) method was
firstly introduced for voice conversion by Stylianou et al. [1].
This method makes use of GMM to model the density of

source vector x as,

K
ponm () = Y N (|, Si), (23)
k=1
where N(z|ur,Xr) denotes a Gaussian distribution with
mean py and covariance matrix 3, and {ay } are the weights.
The authors [1] assumed that the mapping function has a

form,

Y = Fomu(z) = Y e (klz) (v + DeSy " (2 — ),
k

(24)

_ _ wpN(@[pg,Xk)
where peam (k|z) = S s, Ny 55

GMM-based mapping function Eq. 24 reduces to MPLR

It is easy to see that
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mapping function Eq. 10, when we set p(z|k) = N (z|uk, Zk),
wk = ag, Tr, = vk and Vlg: =TI.

After the GMM is trained, pur and Xy are known. And the
unknown transformation parameters v, and I'y, of Eq. 24 are

obtained by solving the following optimal problem [1],

min Zlyz ZPGMM(’C\M)(W+Fk221($i—uk))|2~

{vk.Tr}

(25)

This is essentially the same as Eq. 12, and is computationally
expensive, since {v;} and {I'x} totally include Km + Knm
variables. As discussed in [1], the optimization of Eq. 25 in-
cludes a heavy matrix-inverse step which requires O((Kn)?)
multiplications.

In our formulation of MPLR, the transformation parame-
ters can be calculated directly by using Eq. 17, where the
inverse only requires about O(Kn®) multiplications. We call
this new calculation (Eq. 17) as MPLR modified GMM-
mapping, or MPLR-GMM for short. MPLR-GMM leads to
faster computation with less memory cost than [1]. Note the
mapping function of MPLR-GMM is not identical to that
of GMM mapping [1] (Eq. 24), since MPLR-GMM doesn’t
optimize Eq. 25. We will compare them in experiments.

The GMM-based mapping[1] only performs density esti-
mation on the source vectors {z;}, and assumes that the
target vectors {y;} have the same clustering structure as the
source one. To overcome this limitation, Kain et al. [2] used

GMM to model the density of joint vector z; = [z7 ,yi]%,

K
PGMM-J (Z) = Z OCEN(Z|M27 Ei)a (26)
k=1

%}. We call this model ‘GMM-J’ for short.

The mean vector uj and X7 can be decomposed by:

B qu B T yay
Nk:|: I;:|7Ek:|: iy y :| (27)

Z oSy

where \* = {u,

Then the transformation function [2], [9] is given by

y' = Fanmeg(z)
_Z ap N 13|Hk72k )

Yy Zyxza:xfl T )
ZN(:L‘|/1J,EII) (M}c+ E &k (x — pi))

Optimized for p(kl|z;
Weight p(k|z) P plk]z:)

(28)

If we set wp = af, p(zlk) = N(z|ug,2E%%), Tr, = K%,
Yry = Wi, Vi, = ZF" and V¥ = X7, Eq. 28 will be
the same as the mapping function Eq. 10 of MPLR (remind
Eq. 22).

There is an implicit problem of the GMM-J mapping
Recall in the EM training of GMM,

parameters af, pi, py, 3% and X7° are calculated based

function Eq. 28.

on the posterior probability of joint vector z, denoted by

af N(zi] )
p(k|zi) = SPEEGETL

rameters in Eq. 28 should be calculated by using the poste-

However, the transformation pa-

rior probability p(k|x;) of source vector x. This is because,
in the testing phase, only source vector x is given and we
don’t have complete information on z. In other words, in the
GMM-J mapping function Eq. 28, while the weights {p(k|z)}
are calculated from the posterior probability of source vector
® and Y} are
optimized for the posterior probability p(k|z) of joint vector

z, the transformation parameters {uf, uf,

z. This fact affects its performance.

We use MPLR to overcome the above problem of GMM-
J based mapping. After GMM training of the joint vec-
tors, we can calculate the marginal probability of x as
p(zlk) = [ p(z|k)dy, which is actually N(z|ut,X5"). Then
we can calculate r; x = p(k|xz;) with Eq. 11, and calculate
the GMM’s weight for p(z|k) as

e DTk
A — = — -
Zj Zz Ti,j

In the next, we use Eq. 17 to estimate the optimal transfor-

(29)

mation parameters Ag. It is noted that these optimal trans-
formation parameters can also be estimated from Eq. 18,
19, 20, 21 . We call this method the MPLR-modified GMM
mapping with joint density estimation, or '"MPLR-GMM-J’

for short.
4. Experiments

We experimentally compared the proposed MPLR-GMM
and MPLR-GMM-J with traditional GMM and GMM-J
based mapping methods on a voice conversion task. The
ATR-503 phoneme balanced corpus pronounced by a male
speaker and a female speaker is used for evaluation. The
sampling frequency of utterances is 16kHz. We converted
the male voice to the female voice by using 20 dimension cep-
strum features. The training data is aligned by DP match-
ing. The cepstrum distortion [1], [9] between the target cep-
strum vector [ytl, ey yfo] and the converted cepstrum vector

[ye,...,y2% is defined as

CD[AB](ye, y:) = 10/In10, |2y " (y¢
d=1

—yé)?.  (30)

We use the average cepstrum distortion (ACD) as an evalu-
ation measure.

‘We conducted two experiments for evaluation. In the first
experiment, we randomly selected 40 sentences for training
and used another 100 sentences for testing. We gradually
changed mixture number K as 1,2,4,8,16. Note when K =1,
all the methods reduce to the classical linear regression. In

the 2nd experiment, we fix the mixture number as 5 and

— 5 —
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change the number of training utterances M as 10,20,...,100.
The number of utterances for testing is also set as 100. The
results are summarized in Fig. 3 and Fig. 4. As one can see,
the proposed MPLR-GMM-J always achieves the least ACD
than among all the methods compared in various parameter
setups. The performance of MPLR-GMM is a bit better than
that of GMM. As discussed in Section 3.2, MPLR-GMM re-
quires less time and memory cost than GMM.

Tt can be observed from Fig. 3 that the ACD difference be-
tween MPLR-GMM-J and GMM-J increases as the mixture
number K increases. This is because, the transformation pa-
rameters of GMM-J depends on p(k|z) while the parameters
of MPLR-GMM-J depends on p(k|x) (refer to Section 3.2 for
details), and p(k|z) becomes more unlike p(k|z) as mixture
number K increases. It is expected that MPLR-GMM-J has
much better performance than GMM-J when K is large.

5. Conclusions

This paper proposes the mixture of probabilistic linear
regressions (MPLR) to learn the mapping function from a

source feature space to a target one. The mapping parame-

ters of MPLR can be estimated directly from matrix calcula-
tion, and the mixture nature of MPLR allows it to deal with
the nonlinear mapping. Moreover, MPLR doesn’t depend on
a specific density model, which enables it to be suitable for
various applications. We show the two famous GMM based
mapping methods [1], [2] can be regarded as the special cases
of MPLR. And we find that the formulation of MPLR indi-
cates methods to improve them. Compared with [1], MPLR
provides faster calculation of mapping parameters and a bit
better performance. The formulation of MPLR leads to a
modified mapping function which can overcome an implicit
We compared MPLR-based meth-
ods with the two traditional GMM-based methods in voice

conflict problem in [2].

conversion. The experimental results show that our MPLR-
based methods have less cepstrum distortions. It is noted
that it is not our objective in this paper to develop a high
quality voice conversion (VC) system. One can combine
our MPLR based methods with other VC techniques such
as [9],[10] in developing practical systems. We are going to
examine the proposed methods in larger database with sub-
jective evaluations in the future. Finally, it is noted that the
formulation of MPLR is general and can have applications
in other fields.

00 The first author would like to thank the Japan So-
ciety for the Promotion of Science (JSPS) for the fellowship
under P19.07078.
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