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あらまし 本論文では二つの特徴空間の写像を学習する確率的線形回帰混合モデル（MPLR）を提案する。MPLRは

複数の確率的線形回帰モデルを重み付きで混合することで構成されており、そのパラメータは行列計算によって推定

可能である。MPLRは混合モデルであるため、非線形写像を取り扱う事ができる。またMPLRは一般化された定式

化であるため、確率密度として特定のモデルを要求しない。よく知られている GMMを用いた音声変換法 [1], [2]は

MPLRの特別な場合と解釈でき、MPLRによる一般化によって、GMMに基づく音声変換法を改良することが可能と

なる。[1]に対しては、MPLR の定式化を用いることで、複雑な一次方程式の解探索を避け、より高速なパラメータ推

定が可能になる。更にMPLRは [2]に存在する暗黙の問題を解決する事ができる。我々は音声変換タスクで提案手法

と従来のGMM法について評価実験を行った。様々なパラメータ設定において実験を行った結果、MPLR法は従来法

に対してより良い性能を示した。
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Abstract This paper introduces a model of Mixture of Probabilistic Linear Regressions (MPLR) to learn a map-

ping function between two feature spaces. The MPLR consists of weighted combination of several probabilistic linear

regressions, whose parameters are estimated by using matrix calculation. The mixture nature of MPLR allows it to

model nonlinear transformation. Ｔ he formulation of MPLR is general and independent of the types of the density

models used. Two well-known GMM-based mapping methods for voice conversion [1], [2] can be regarded as the

special cases of MPLR. This unified view not only provides insights to the GMM-based mapping techniques, but

also indicates methods to improve them. Compared to [1], our formulation of MPLR avoids solving complex linear

equations and yields a faster estimation of the transform parameters. As for [2], the MPLR estimation provides a

modified mapping function which overcomes an implicit problem in [2]’s mapping function. We carried out experi-

ments to compare the MPLR-based methods with the traditional GMM-based methods [1], [2] on a voice conversion

task. The experimental results show that the MPLR-based methods always have better performance in various

parameter setups.
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1. Introduction

To find a mapping function between two feature spaces is

a fundamental problem in many signal processing and pat-

tern recognition problems. In speech engineering, a map-

ping function from the cepstrum feature of a source speaker

to that of a target speaker can be used for voice conver-

sion [1], [2]. In this paper, we propose a model called Mix-

ture of Probabilistic Linear Regressions (MPLR) for learn-

ing the mapping function between two feature spaces. The

MPLR is made up of several Probabilistic Linear Regressions

(PLR), whose parameters can be optimized through matrix

calculation. The mapping function of MPLR is a weighted

summation of the PLRs, where the weights depend on input
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samples. The MPLR is based on a similar linear calculation

to PLR, however, it can deal with nonlinear transformations

due to its mixture nature. Moreover, MPLR has such a flex-

ible form that it doesn’t need to specify the form of the

density function.

We find that both of the two GMM-based mapping tech-

niques [1], [2], which have been widely used for voice con-

version, can be related to our MPLR. The difference be-

tween them comes from the density model and the hidden

parameters used for parameter estimation. This unified view

(MPLR) not only yields insights to the GMM-based map-

ping methods but also provides methods to improve them.

As for [1], the formulation of MPLR yields a faster and more

direct calculation of the mapping parameters without solv-

ing complex linear equations. We find the method of [2]

includes an implicit problem in its mapping function, and

introduce a modified method to estimate the mapping pa-

rameters based on MPLR. We conduct comparison experi-

ments between the MPLR-based methods and the traditional

GMM-based methods on a voice conversion task. The re-

sults show that our MPLR-based methods always have the

least cepstrum distortion in various conditions. The formula-

tion of MPLR is general, and may have applications in other

tasks, such as speech alignment and speaker adaption.

It is noted that, although similar in names, our method

is different from the Mixture of Linear Regressions (MLR)

proposed in the context of statistics [3], [4]. Different from

our method, MLR doesn’t make any use of the density of

the source data. Actually, it can be seen as a special exam-

ple of MPLR if we assume all the source samples have equal

probability and consider density models of mapping errors

during training. Our method is also related to Maximum-

likelihood stochastic-transformation (MLST) [5], which was

proposed for speaker adaption of HMM. However, different

from MPLR, MLST is not a regression model and is limited

to Gaussian or Gaussian mixture distributions. Moreover,

one of the important characteristics of MPLR is that the

prior probability of each PLR is estimated from the source

vector; while in MLST, the prior probability is calculated as

the joint probability of mixture index and LR index.

2. Regression

Generally speaking, estimation of a mapping function can

be seen as a regression problem [6], [7] from a source space

to a target space. Let x denote a source vector with di-

mensionality n, and y denote a target vector with dimen-

sionality m. The objective of regression is to estimate a

regression/mapping function,

y′ = f(x). (1)

The regression analysis has been studied long and widely and

has important applications in machine learning and pattern

recognition.

Assume we have a set of training samples {xi, yi}I
i=1. Let

X = [x1, x2, ..., xI ] and Y = [y1, y2, ..., yI ]. By minimizing

the least squared error, the optimal mapping function can

be estimated by

arg min
f

∑
i

|yi − f(xi)|2. (2)

2. 1 Linear Regression

To begin with, assume f has a linear form, the problem

reduces to a linear regression [6],

y′
i = Bxi + b. (3)

In this paper, we only consider unbiased linear regression,

that is, E[y] = BE[x] + b. With argument vector x̂i =

[xT
i , 1]T , Eq. 3 can be simplified to

y′
i = Ax̂i. (4)

Minimizing the summation of squared error (MSE), we have

arg min
A

∑
i

|yi − Ax̂i|2. (5)

If we set p(yi|x̂i, A) = (2πσ2)−m/2 exp(− 1
2σ2 |y−Ax̂|2), the

above Eq. 5 is essentially the same as the following maximum

likelihood estimation

arg max
A

∏
i

p(yi|x̂i, A). (6)

Let X̂ = [x̂1, x̂2, ..., x̂I ]. The optimal A for Eq. 5 can be

calculated by using matrix calculation,

A = Y X̂T (X̂X̂T )−1, (7)

where ’T ’ denotes matrix transpose.

MSE of LR is an unbiased estimator. And according to

Gauss-Markov theorem [7], among all the unbiased linear

transformations, the MSE transformation of Eq. 5 has the

minimum variance. For this reason, it is sometimes called

the best linear unbiased estimator (BLUE).

2. 2 Probabilistic Linear Regression

The MSE objective function Eq. 5 of LR treats each

training sample equally. In Probabilistic Linear Regression

(PLR), we consider weight pi for xi. Note in this paper, pi

has not to be always probability of xi, and pi can be con-

ditional probability of transform A given xi. The optimal

objective of PLR estimation is formulated as,

arg min
A

∑
i

pi|yi − Ax̂i|2. (8)

Define a diagonal matrix P , whose diagonal is [p1, p2, ..., pI ].

The optimal A for PLR can be calculated by,

A = Y PX̂T (X̂PX̂T )−1. (9)
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3. Mixture of Probabilistic Linear Re-
gressions

Although LR is simple, many real problems include non-

linear transformations which cannot be approximated well

by a linear one. Perhaps the simplest idea to deal with non-

linear transformation is to divide the feature space S into

several blocks and calculate a linear transformation for ev-

ery block (Fig. 1). According to Taylor theorem, there must

exist a good linear approximation for each block if the divi-

sion is fine enough. Statistically speaking, division of S can

reduce bias of the estimated mapping. However, the hard

and deterministic division of the feature space into blocks

can be difficult. Especially, when the feature space has high

dimensions and the number of training samples is limited,

it is usually difficult to obtain enough training samples for

each block. For this reason, instead of hard division of the

feature space, we consider a probabilistic and soft division,

which leads to the following Mixture of Probabilistic Linear

Regressions (MPLR).

3. 1 Formulation of MPLR

This section describes the formulation of MPLR and its

relation to GMM based voice conversion techniques. Let us

consider K ‘virtual spaces’ {Sk}K
k=1 (Fig. 2), each of which

has the same region as the source feature space. We use

p(x|k) to represent the density of x in virtual space Sk. The

densities {p(x|k)} yield information for soft division. Then

we estimate a PLR y = Akx̂ (Ak denotes the transformation

matrix) for Sk. The final regression function is a weighted

combination of all PLRs, where the weights are given by

posterior probability p(k|x), which is actually a conditional

probability of Sk given x. Formally, we have

y′ = FMPLR(x) =

K∑
k=1

p(k|x)Akx̂. (10)

Given density p(x|k), posterior p(k|x) can be calculated by

using the Bayes’ theorem,

p(k|x) =
wkp(x|k)∑
j wjp(x|j) , (11)

where wk = p(k) denotes a prior probability of the k-th PLR

or Sk, and
∑

k wk = 1.

The diagram of MPLR is depicted in Fig. 2. MPLR avoids

the hard division of feature space, and makes effective use of

all training data for estimating the transformation parame-

ters of each PLR. It is noted that MPLR doesn’t make any

special assumption on the form of p(x|k), it can be Gaussian,

Gaussian mixture, uniform, Gamma etc.. And it doesn’t in-

clude any specification on how p(x|k) should be estimated.

Just take two examples. We can estimate p(x|k) from x only

using certain mixture models. Or we can calculate the joint

A1x A2x Akx AKx
… …

x’

Akx’

1

2 k

K

図 1 Linear regression with space division.

Source space S
x

…

Virtual spaces

(Gray level for 

density p(x|k) )

S1 S2 SK

p(1|x)

Prb. Linear Regr. A1x A2x AKx

Mix. Of  Prb. Linear Regression y=Σ p(k|x) Akx

…

Posterior Prb.

Prior Prb. p(1) p(2) p(K)

p(2|x) p(K|x)…

図 2 Diagram of mixture of probabilistic linear regression

probability p(x, y|k) at first and then estimate p(x|k) as a

marginal probability p(x|k) =
∫

p(x, y|k)dy. Note these two

estimations will practically lead to different p(x|k) as the

second density estimation accounts for the joint relation be-

tween x and y. This flexibility allows us to design a specific

form of p(x|k) for a certain problem.

Generally, the calculation of p(x|k) and p(k) is a den-

sity estimation problem, which has been widely addressed

in statistics and pattern recognition. As we consider mix-

ture model here, EM algorithm provides an effective tool

for estimation [8]. So in the next, we assume that p(x|k)

and p(k) are given, and our problem reduces to estimate the

transformation matrix Ak of PLR in Eq. 10 from training

data set {xi, yi}I
i=1. For convenience, let pi,k = p(xi|k) and

ri,k = p(k|xi) =
wkpi,k∑
j wjpj,k

. Define matrix Rk with diagonal

as diag(Rk) = [r1,k, r2,k, ..., rI,k].
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The MSE estimation of mapping function Eq. 10 is defined

as,

arg min
{Ak}

∑
i

|yi − FMPLR(xi)|2

=
∑

i

|yi −
∑

k

ri,kAkx̂i|2

=
∑

i

|
∑

k

ri,k(yi − Akx̂i)|2, (12)

where
∑

k ri,k = 1. This is a linear optimization

problem which can be solved directly. Let X̂k =

[r1,kx̂1, r2,kx̂2, ..., rI,kx̂I ] and X̂ = [X̂T
1 , X̂T

2 , ..., X̂T
K ]T . The

optimal transform matrices {A∗
k} for Eq. 12 are given by

[A∗
1, A

∗
2, ..., A

∗
K ] = Y X̂T (X̂X̂T )−1. (13)

However, this is computationally expensive, since matrix X̂
has a size K(n + 1) × I. Another problem of Eq. 13 is

that each PLR can be biased. In other words, the following

formula may not hold for Eq. 13,∑
i

ri,kyi =
∑

i

ri,kAx̂i. (14)

Here we consider a fast and approximate calculation. Tak-

ing ri,k as a weight for xi in Sk, we can approximate Eq. 12

as（注1）

arg min
{Ak}

∑
k

∑
i

ri,k|yi − Akx̂i|2. (15)

This can be further decomposed into K linear optimization

problems for each Ak,

arg min
Ak

∑
i

ri,k|yi − Akx̂i|2. (16)

Recalling the optimal solution for probabilistic linear

transformation in Eq. 8 and Eq. 9, we calculate optimal

Ak for Eq. 15 as,

Ak = Y RkX̂T (X̂RkX̂T )−1. (17)

The optimal Ak depends on training data {xi, yi} and ri,k,

whose values can be estimated from the density models

p(x|k) and p(k). Note that the PLR given by Eq. 17 is

always unbiased. Although Eq. 17 is only an approximately

optimal answer for Eq. 12, we found that the approximate

Eq. 17 has comparable performance with Eq. 13 in our ex-

periments. We think this is because Eq. 13, which directly

optimizes Eq. 12, may overfit the training data, and can lead

to biased PLRs.

In the next, we will decompose transformation Akx̂ (Eq.

（注1）：According to Jensen’s inequality,
∑

k(wktk)2 <=
∑

k wktk
2, for∑

k wk = 1and 1 >= wk >= 0. Therefore Eq. 15 yields an upper bound-

ary of Eq. 12.

17) into another familiar form by using the conditional means

and covariance matrices. Firstly, define the conditional mean

of x and y on Sk as,

x̄Rk = Ep(k|x)[x] =
1

Nk

∑
i

ri,kxi, (18)

ȳRk = Ep(k|x)[y] =
1

Nk

∑
i

ri,kyi, (19)

where Nk =
∑

i ri,k is used for normalization. Since our PLR

is unbiased, we have ȳRk = Ak
¯̂xRk . Then define the condi-

tional covariance matrix and correlation matrix of x and y

on Sk as,

V xx
Rk

= Ep(k|x)[(x − Ep(k|x)[x])(x − Ep(k|x)[x])T ]

=
1

Nk

∑
i

ri,k(xi − x̄Rk)(xi − x̄Rk)T , (20)

V yx
Rk

= Ep(k|x)[(y − Ep(k|x)[y])(x − Ep(k|x)[x])T ]

=
1

Nk

∑
i

ri,k(yi − ȳRk)(xi − x̄Rk)T . (21)

Using Eq. 18, Eq. 19, Eq. 20, and Eq. 21, we obtain

Akx̂ = ȳRk + V yx
Rk

(V xx
Rk

)−1(x − x̄Rk ). (22)

In the remainder of this section, we show both of the two

well-known voice conversion methods: GMM-based map-

ping [1] and GMM of joint vector density based mapping

method [2] can be regarded as the special cases of MPLR,

which differ from each other in how to model densities and

how to calculate {ri,k}. Note that this unified view by MPLR

not only provides insightful understanding of the two meth-

ods, but also leads to techniques to improve them, for which

we give the details later.

3. 2 Connection to GMM based mapping meth-

ods [1], [2]

The GMM-based mapping (voice conversion) method was

firstly introduced for voice conversion by Stylianou et al. [1].

This method makes use of GMM to model the density of

source vector x as,

pGMM(x) =

K∑
k=1

αkN(x|µk, Σk), (23)

where N(x|µk, Σk) denotes a Gaussian distribution with

mean µk and covariance matrix Σk, and {αk} are the weights.

The authors [1] assumed that the mapping function has a

form,

y′ = FGMM(x) =
∑

k

pGMM(k|x)(νk + ΓkΣ−1
k (x − µk)),

(24)

where pGMM(k|x) = wkN(x|µk,Σk)∑K
j=1 wjN(x|µj ,Σj)

. It is easy to see that

GMM-based mapping function Eq. 24 reduces to MPLR
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mapping function Eq. 10, when we set p(x|k) = N(x|µk, Σk),

wk = αk, x̄Rk = νk and V yx
Rk

= Γk.

After the GMM is trained, µk and Σk are known. And the

unknown transformation parameters νk and Γk of Eq. 24 are

obtained by solving the following optimal problem [1],

min
{νk,Γk}

∑
i

|yi −
∑

k

pGMM(k|xi)(νk + ΓkΣ−1
k (xi − µk))|2.

(25)

This is essentially the same as Eq. 12, and is computationally

expensive, since {νk} and {Γk} totally include Km + Knm

variables. As discussed in [1], the optimization of Eq. 25 in-

cludes a heavy matrix-inverse step which requires O((Kn)3)

multiplications.

In our formulation of MPLR, the transformation parame-

ters can be calculated directly by using Eq. 17, where the

inverse only requires about O(Kn3) multiplications. We call

this new calculation (Eq. 17) as MPLR modified GMM-

mapping, or MPLR-GMM for short. MPLR-GMM leads to

faster computation with less memory cost than [1]. Note the

mapping function of MPLR-GMM is not identical to that

of GMM mapping [1] (Eq. 24), since MPLR-GMM doesn’t

optimize Eq. 25. We will compare them in experiments.

The GMM-based mapping [1] only performs density esti-

mation on the source vectors {xi}, and assumes that the

target vectors {yi} have the same clustering structure as the

source one. To overcome this limitation, Kain et al. [2] used

GMM to model the density of joint vector zi = [xT
i , yT

i ]T ,

pGMM-J(z) =

K∑
k=1

αz
kN(z|µz

k, Σz
k), (26)

where λz = {µz
k, Σz

k}. We call this model ‘GMM-J’ for short.

The mean vector µz
k and Σz

k can be decomposed by:

µz
k =

[
µx

k

µy
k

]
, Σz

k =

[
Σxx

k Σxy
k

Σyx
k Σyy

k

]
. (27)

Then the transformation function [2], [9] is given by

y′ = FGMM-J(x)

=
∑

k

αz
kN(x|µx

k, Σxx
k )∑

j αz
j N(x|µx

j , Σxx
j )︸ ︷︷ ︸

Weight p(k|x)

(µy
k + Σyx

k Σxx
k

−1(x − µx
k))︸ ︷︷ ︸

Optimized for p(k|zi)

.

(28)

If we set wk = αz
k, p(x|k) = N(x|µx

k, Σxx
k ), x̄Rk = µx

k,

ȳRk = µy
k, V xx

Rk
= Σxx

k and V yx
Rk

= Σyx
k , Eq. 28 will be

the same as the mapping function Eq. 10 of MPLR (remind

Eq. 22).

There is an implicit problem of the GMM-J mapping

function Eq. 28. Recall in the EM training of GMM,

parameters αz
k, µx

k, µy
k, Σxx

k and Σyx
k are calculated based

on the posterior probability of joint vector z, denoted by

p(k|zi) =
αz

kN(zi|µz
k,Σz

k)∑
j αz

j N(zi|µz
j ,Σz

j )
. However, the transformation pa-

rameters in Eq. 28 should be calculated by using the poste-

rior probability p(k|xi) of source vector x. This is because,

in the testing phase, only source vector x is given and we

don’t have complete information on z. In other words, in the

GMM-J mapping function Eq. 28, while the weights {p(k|x)}
are calculated from the posterior probability of source vector

x, the transformation parameters {µx
k, µy

k, Σxx
k and Σyx

k } are

optimized for the posterior probability p(k|z) of joint vector

z. This fact affects its performance.

We use MPLR to overcome the above problem of GMM-

J based mapping. After GMM training of the joint vec-

tors, we can calculate the marginal probability of x as

p(x|k) =
∫

p(z|k)dy, which is actually N(x|µx
k, Σxx

j ). Then

we can calculate ri,k = p(k|xi) with Eq. 11, and calculate

the GMM’s weight for p(x|k) as

αx
k =

∑
i ri,k∑

j

∑
i ri,j

. (29)

In the next, we use Eq. 17 to estimate the optimal transfor-

mation parameters Ak. It is noted that these optimal trans-

formation parameters can also be estimated from Eq. 18,

19, 20, 21 . We call this method the MPLR-modified GMM

mapping with joint density estimation, or ’MPLR-GMM-J’

for short.

4. Experiments

We experimentally compared the proposed MPLR-GMM

and MPLR-GMM-J with traditional GMM and GMM-J

based mapping methods on a voice conversion task. The

ATR-503 phoneme balanced corpus pronounced by a male

speaker and a female speaker is used for evaluation. The

sampling frequency of utterances is 16kHz. We converted

the male voice to the female voice by using 20 dimension cep-

strum features. The training data is aligned by DP match-

ing. The cepstrum distortion [1], [9] between the target cep-

strum vector [y1
t , ..., y20

t ] and the converted cepstrum vector

[y1
c , ..., y20

c ] is defined as

CD[dB](yc, yt) = 10/ ln 10

√√√√2

20∑
d=1

(yd
t − yd

c )2. (30)

We use the average cepstrum distortion (ACD) as an evalu-

ation measure.

We conducted two experiments for evaluation. In the first

experiment, we randomly selected 40 sentences for training

and used another 100 sentences for testing. We gradually

changed mixture number K as 1,2,4,8,16. Note when K = 1,

all the methods reduce to the classical linear regression. In

the 2nd experiment, we fix the mixture number as 5 and
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change the number of training utterances M as 10,20,...,100.

The number of utterances for testing is also set as 100. The

results are summarized in Fig. 3 and Fig. 4. As one can see,

the proposed MPLR-GMM-J always achieves the least ACD

than among all the methods compared in various parameter

setups. The performance of MPLR-GMM is a bit better than

that of GMM. As discussed in Section 3.2, MPLR-GMM re-

quires less time and memory cost than GMM.

It can be observed from Fig. 3 that the ACD difference be-

tween MPLR-GMM-J and GMM-J increases as the mixture

number K increases. This is because, the transformation pa-

rameters of GMM-J depends on p(k|z) while the parameters

of MPLR-GMM-J depends on p(k|x) (refer to Section 3.2 for

details), and p(k|z) becomes more unlike p(k|x) as mixture

number K increases. It is expected that MPLR-GMM-J has

much better performance than GMM-J when K is large.

5. Conclusions

This paper proposes the mixture of probabilistic linear

regressions (MPLR) to learn the mapping function from a

source feature space to a target one. The mapping parame-

ters of MPLR can be estimated directly from matrix calcula-

tion, and the mixture nature of MPLR allows it to deal with

the nonlinear mapping. Moreover, MPLR doesn’t depend on

a specific density model, which enables it to be suitable for

various applications. We show the two famous GMM based

mapping methods [1], [2] can be regarded as the special cases

of MPLR. And we find that the formulation of MPLR indi-

cates methods to improve them. Compared with [1], MPLR

provides faster calculation of mapping parameters and a bit

better performance. The formulation of MPLR leads to a

modified mapping function which can overcome an implicit

conflict problem in [2]. We compared MPLR-based meth-

ods with the two traditional GMM-based methods in voice

conversion. The experimental results show that our MPLR-

based methods have less cepstrum distortions. It is noted

that it is not our objective in this paper to develop a high

quality voice conversion (VC) system. One can combine

our MPLR based methods with other VC techniques such

as [9], [10] in developing practical systems. We are going to

examine the proposed methods in larger database with sub-

jective evaluations in the future. Finally, it is noted that the

formulation of MPLR is general and can have applications

in other fields.
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