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Abstract: Speech communication has several steps of production (encoding), transmission, and hearing (decoding). In every step, acous-
tic and static distortions are involved inevitably by differences of gender, age, microphone, room, line, auditory characteristics, etc. In spite 

of these variations, human listeners can extract linguistic information from speech so easily as if the variations do not disturb the commu-

nication at all. One may hypothesize that listeners modify their internal acoustic models whenever either of a speaker, a room, a micro-

phone, or a line is changed. Another one may hypothesize that the linguistic information in speech can be represented separately from the 

extra-linguistic factors. In this study, being inspired from infants’ behaviors and animals’ behaviors, our solution to the intrinsic and inevi-

table variations in speech is described [1,2,3]. Speech structures, invariant to these variations, are derived as completely transform-invariant 

features [4] and their linguistic and psychological validity is discussed here. Further, some speech applications of ASR [3] and CALL [5] 

using the structures are shown, where extremely robust performance with speaker variability can be obtained with speech structures. 

Index Terms: Speech structures, extra-linguistic feature, vocal imitation, invariance, f-divergence, ASR, and CALL 

 

1 Introduction 

Every normally developed individual shows ex-
tremely robust performance of speech processing. A 
five-year-old boy can understand on a mobile phone 
what a caller says even when he hears the voices of 
that caller for the first time. In a TV show, the tallest 
man and the shortest one in the world communicate 
orally against the largest gap of voice quality existing 
between the two. Why is our perception so robust? 
Linguistic messages in speech are the information en-
coded in a speech stream [6]. Then, what is the human 
robust algorithm of decoding that information? 
 Our perception is not only robust with speech 
variability but also robust with variability in other me-
dia. Generally and psychologically speaking, the ro-
bustness of perception is called perceptual constancy. 
For example, a visual image is modified in its shape 
by viewpoint changes but our perception is constant. 
As for color, a flower in broad daylight and the same 
one at sunset give us different color patterns but we 
perceive the equivalence between them. Humming by 
a male and that of the same melody by a female often 
differ in fundamental frequency but we easily perceive 

the equivalence. Male voices are deeper in timbre than 
female ones but the invariant perception is easy be-
tween a father's “hello!” and a mother's. Although the 
above stimuli are presented as different media, all the 
changes are caused commonly by static biases. 

In this paper, psychologists’ discussions on the 
perceptual constancy are overviewed from an engi-
neering viewpoint. Then, a focus is put on how robust 
animals’ perception is and humans’ perception is, and 
then, what kind of difference is found between them. 
Following these discussions, we describe our proposal 
of speech structure: a speaker-invariant contrastive 
and dynamic representation of speech. After that, we 
survey what we did so far using the speech structures. 

2 Nature of perceptual constancy 

It seems that researchers of psychology found 
that, among different media, a similar mechanism is 
working to cancel the static biases and realize the in-
variant perception [7,8,9]. Figure 1 shows the look of 
the same Rubik's cube seen through differently col-
ored glasses. Although the corresponding tiles of the 
two cubes have different colors absolutely, we name 
them using the same labels. On the other hand, though 
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Figure 1: The same Rubik’s cube seen with two colored glasses 

 

 

 

 

 

 

Figure 2: Perception of colors without context 

 

 

 

Figure 3: A musical melody and its transposed version 

 

 

 

Figure 4: Tonal arrangement (scale) of the major key 

 
we see four blue tiles on the top of the left cube and 
seven yellow tiles on the right, when their surrounding 
tiles are hidden, we suddenly see that they have the 
same color (See Figure 2). Absolutely different colors 
are perceived as identical and absolutely identical col-
ors are perceived as different. 

Similar phenomena are found in tone perception. 
Figure 3 shows two sequences of musical notes. The 
upper corresponds to humming by a female and the 
other to that of the same melody by a male. If hearers 
have relative pitch and can transcribe these melodies, 
they convert the two melodies into the same sequence 
of syllable names (So Mi So Do La Do Do So). The 
first tone of the upper and that of the lower are differ-
ent absolutely but they name these tones using the 
same label. The first tone of the upper and the fourth 
of the lower are identical absolutely but they claim 
that the two tones are different. Similar to colors, ab-
solutely different tones are perceived as identical and 
absolutely identical tones are perceived as different. 

Researchers found that the invariant perception, 
colors and tones, occurs primarily based on con-
trast-based information processing [7,8,9]. In other 
words, our invariant perception of colors and tones is 
guaranteed by the invariant relationship of the focused 

stimulus to its surrounding stimuli. For individuals 
with relative pitch, a single tone is hard to name but 
tones in a melody are easy to transcribe. If two tones 
in a melody of the major key, which can be temporally 
distant, are three wholetones apart in pitch, they must 
be Fa and Ti according to the tonal arrangement (scale) 
of the major key (See Figure 4). This arrangement is 
invariant with key and, using this arrangement as con-
straint, the key-invariant tone identification can occur. 

As was found in ecology, the invariant color per-
ception occurs even to butterflies and bees [10]. It is 
extremely old evolutionarily. In contrast, researchers 
of anthropology found that the invariant tone percep-
tion is difficult even for monkeys [11]. What they 
claim is not that monkeys cannot transcribe a melody 
but that monkeys cannot perceive the equivalence be-
tween a melody and its transposed version [11]. The 
relative pitch perception is very new evolutionarily. 

3 Human development of spoken language 

How can infants acquire the ability of robust 
speech processing? Recently, in the field of AI, there 
is a research trend to focus on infants' acquisition and 
development of cognitive abilities [12,13,14]. One 
obvious fact is that a major part of the utterances an 
infant hears are from its parents. After it begins to talk, 
about a half of the utterances it hears are its own 
speech. It can be said that the utterances an individual 
hears are strongly speaker-biased unless he/she has 
speaking disabilities. The speech variability problem 
should be solved not by collecting samples if one re-
ally wants to realize a human-like speech processor. 

Infants acquire spoken language through imitat-
ing their parents' utterances actively, called vocal imi-
tation. But they don't impersonate their parents. A 
question is raised: what acoustic aspect of the voices 
do infants imitate? One may claim that infants de-
compose an utterance into a phoneme sequence and 
each phoneme is realized acoustically by their mouths. 
But researchers of infant studies deny this claim be-
cause infants don't have good phonemic awareness 
[15,16]. Then, what is imitated? 

An answer from infant studies is the holistic 
sound pattern embedded in an utterance [15,16] called 
otherwise as word Gestalt [17] and related spectral 
patterns [18]. The holistic pattern has to be speaker- 
invariant because, whoever speaks a specific word to 
an infant, its responses of imitation are similar acous- 

log(F0) log(2F0)

w w w w ws s
Do Re Mi Fa So La Ti Do

w=wholetone
 s =semitone
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Figure 5: /aiueo/ produced by a tall speaker and a short one 
 
tically. Another question is raised: what is the physical 
definition of the speaker-invariant holistic pattern? 

The vocal imitation is rare in animals [19] and 
non-human primates scarcely imitate others' utterances 
[20]. This performance can be found in only a few 
species of animals: birds, whales, and dolphins. But 
there is a critical difference between humans and ani-
mals. Animals' imitation is basically the imitation of 
sounds like impersonation [19]. Take myna birds for 
example. They imitate the sounds of cars, dogs as well 
as human voices. Hearing a very good myna bird say 
something, one can guess its human owner [21] but 
cannot guess the parents of an infant by hearing its 
voices. Considering that the same pitch contours (in-
tonation patterns) of different keys (genders or speak-
ers) are equivalent for humans but different for mon-
keys and that the same linguistic content acoustically 
generated by different speakers are equivalent for hu-
mans but probably different for animals [22], the abil-
ity of extracting an invariant and abstract pattern from 
a variable sound stream might be unique to humans. 

4 Natural solution of speaker variability 

As for speech, changes in vocal tract shape and 
length cause timbre changes. Basically speaking, dy-
namic and morphological changes of the vocal tract 
generate different phonemes acoustically. Static dif-
ferences of the vocal tract shape and length among 
speakers cause speaker variability. Figure 5 shows the 
same message generated by a tall speaker and a short 
one. What is the speaker-invariant holistic pattern? 

Speaker difference is often modeled mathemati-
cally as space mapping in studies of voice conversion. 
This means that if we can find some transform invari-
ant features, they can be used as speaker-invariant 
features. Recently, some proposals have been done 
[23,24] but speaker variability was always modeled 
simply as  =   ( =frequency,  =constant). Many 
studies of speaker conversion adopted more sophisti-
cated transforms, indicating that  =   cannot char-
acterize speaker variability well enough. Further, it 
should be noted that all of these proposals tried to find 
invariant features in individual speech sounds, not in a 
holistic pattern only composed of speech contrasts. 

 
 
 
 
 
 
 

Figure 6: The invariant system of French vowels 
 

As shown in [10], the perceptual constancy of 
colors is found in butterflies. But no researcher claims 
that a butterfly has statistical models of individual col-
ors which are acquired by looking at the colors 
through thousands of differently colored glasses. Fur-
ther, naming individual colors (elements) is not need-
ed to perceive the equivalence between a flower in 
broad daylight and the same one at sunset. In contrast 
in ASR, acoustic and statistical modeling of individual 
phonemes (elements) using thousands of speakers 
(differently shaped tubes) is the most popular ap-
proach. From an ecological and evolutionary view-
point, this strategy is remarkably weird and the in-
variant speech perception should be implemented on 
machines based on processing holistic patterns com-
posed of invariant contrasts or relations. 

A similar claim can be found in classical linguis-
tics [25]. Jakobson proposed a theory of acoustic and 
relational invariance, called distinctive feature theory. 
He repeatedly emphasizes the importance of relational 
and systemic invariance among speech sounds by 
referring to phrases of other scholars such as Klein 
(topologist), Baudouin, and Sapir (linguists). Figure 6 
shows his invariant system of French vowels and 
semi-vowels. Figure 4 is the key-invariant tonal ar-
rangement in melody and Figure 6 is the speaker-in-
variant timbre arrangement in vowel sounds. Consid-
ering that pitch is one-dimensional but timbre is multi- 
dimensional, what has to be implemented on machines 
is a mechanism of relative timbre perception, where 
invariant and multi-dimensional timbre contrasts are 
used to determine the value of individual sounds. In a 
classical study of acoustic phonetics, the importance 
of relational invariance was experimentally verified in 
word identification tests [26]. It should be noted that 
Lagefoged discussed a very good similarity between 
perception of vowels and that of colors [26]. 

f̂

f̂
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5 Mathematical solution of the variability 

4.1 Mathematically guaranteed complete invariance 

 Are there any invariant and contrastive fea-
tures (measures) with respect to any linear or 
non-linear invertible transforms? In [4], we proved 
that f-divergence between two distributions is in-
variant with any kind of invertible and differentiable 
transforms (sufficiency). We also proved that any 
completely invariant measure with respect to two 
distributions has to be written in the form of 
f-divergence (necessity), which is formulated as 
 
 

Figure 7 shows two spaces (shapes) which are de-
formed into each other through an invertible and 
differentiable transform. An event is described not 
as point but as distribution. Two events of   and   
in A are transformed into    and    in B. The 
invariance of f-divergence is always satisfied [4]. 
 
 
In a series of our previous studies [1,2,3,4,5], we 
have been using Bhattacharyya distance (BD) as 
one of the f-divergence measures. Figure 8 shows a 
procedure of representing an input utterance only by 
BD. The utterance in a feature space is a sequence 
of feature (cepstrum) vectors and it is converted into 
a sequence of distributions through automatic seg-
mentation. Here, any speech event is modeled as a 
distribution. Then, the BDs are calculated from any 
pair of distributions to form a BD-based invariant 
distance matrix. As a distance matrix can specify a 
unique geometrical shape, we call the matrix as 
speech structure. Individual speech sounds can 
change but their entire system cannot change at all. 

4.2 Isolated word recognition 

Figure 9 shows the basic framework of isolated 
word recognition based on speech structures. To 
convert an utterance into a distribution sequence, 
the MAP-based HMM training is adopted. Then, the 
BD between any pair of the distributions is obtained. 
After calculating a structure, its structure vector is 
formed by using all the elements in the upper trian-
gle. This vector is a holistic and speaker-invariant 

 
 
 

 

Figure 7: Topological deformation of manifolds (shapes) 

 
 
 
 

Figure 8: An utterance structure composed of f-divergence 

 
 
 
 
 
 
 
 
 
 
 

Figure 9: Framework of structure-based word recognition 

 
representation of a word utterance. The right-hand 
side of the figure shows an inventory of word-based 
statistical structure models for the entire vocabulary. 
The candidate word showing the maximum likeli-
hood score is a result of recognition. 

The speech structure is invariant with any kind 
of invertible transforms. This indicates that two dif-
ferent words can be evaluated as the same. To solve 
this problem, we introduced good constraints called 
Multiple Stream Structuralization (MSS) [27] so 
that we could obtain the invariance only with re-
spect to speaker variability. Due to the limit of 
space, MSS is not explained in details in this paper 
but interested readers should refer to [3,27]. 

In [3,27], structure-based isolated word recog-
nition was compared to substance-based word rec-
ognition. The former used the proposed structure 
(contrast) models and the latter used the conven-
tional word HMMs trained with spectrum-based 
(substance-based) features. Two word sets were 
used. In a set, a word was artificially composed of 
five vowels such as /eauoi/ and /uoaie/. As Japanese 
has only five vowels, PP=120. The other set was a 
Japanese phoneme-balanced word set and PP=220 
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Table 1: Comparison between HMMs and structures [%] 

 
 
 
 
 
 
 
 
 
 
 
 
[28]. To investigate the robustness with respect to 
mismatch between training and testing conditions, 
frequency warping was applied to testing samples to 
simulate speech samples generated by very tall and 
very short speakers. Table 1 summarizes the results. 

  is a warping parameter and varied from -0.4 
to 0.4 at 17 steps.  =-0.4/+0.4 indicates dou-
bling/halving the vocal tract length. Both HMMs 
and structures used no speaker adaptation technique. 
The number of distributions per word is 25 for the 
vowel words and 30 for the balanced words. In the 
figure, matched shows the results of using 17 sets of 
matched conditioned HMMs. In the vowel word set, 
a single set of structures shows almost the same or 
higher performance compared to the 17 matched 
HMM sets. In the phoneme balanced set, however, 
the performance of the structures is lower than that 
of HMMs at  =0.0 although the robustness of the 
structures is shown at  >0.15. This is because un-
voiced consonants are less speaker-dependent and 
absolute features are needed for them. Currently, 
we're integrating both the models for compensation. 
Detailed description of the experiments is in [3,27]. 

4.3 Pronunciation proficiency estimation for CALL 

Acoustic assessment of individual sounds in a 
learner’s utterances can be viewed as phonetic as-
sessment and that of the entire system of the sounds 
can be regarded as phonological assessment. In the 
former, it is assessed whether each sound has proper 
acoustic features, while in the latter, it is examined 
or not whether an adequate sound system underlies 
a learner’s pronunciation. In [29], it was discussed 
which strategy can provide learners with a more 
robust framework of proficiency estimation. 

 
 
 
 
 
 
 
 
 
 

Figure 9: Sub-structure extraction for a teacher and a learner 

For phonetic assessment, we adopted GOP 
(Goodness Of Pronunciation), which was originally 
proposed in [30] and is a widely-used technique. By 
using speaker-independent phoneme HMMs, it is 
calculated as a posterior probability of the intended 
phonemes given input utterances. 
 
 
 
 

  is the length of a given observation sequence and 
  is the number of the intended phonemes.    is 
the speech segment obtained for   through forced 
alignment and    is its duration.            cor- 
respond to        . Q is the phoneme inventory. 
 For phonological assessment, we used pronun-
ciation structure analysis [5]. Based on comparison 
between a learner’s structure and a teacher’s one, 
pronunciation proficiency of that learner was esti-
mated. In [5], after training speaker-dependent mo-
nophone HMMs for each learner, a phoneme-based 
structure was estimated for that learner. In [29], 
however, state-based structures were estimated after 
adequate selection of the states. Figure 9 displays 
how to extract a pronunciation sub-structure from a 
teacher’s utterances or from a learner’s utterances. 
Euclidian distance between the two sub-structures 
was calculated and its negative value was used as 
proficiency score. Physical meaning of the Euclidi-
an distance between two structures is described well 
in [3,29]. Interested readers should refer. 
 Pronunciation proficiencies of 26 learners in 
set-6 of ERJ (English Read by Japanese) database 
[31] were estimated using GOP and structures. For 
GOP, monohpone HMMs were trained using all the 
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Figure 10: Correlations with GOP and structures 

20 native teachers of American English, while for 
structures, M08’s pronunciation structure was used. 
Similar to Section 4.2, frequency warping was also 
done here to simulate utterances of very tall learners 
and very short learners. Figure 10 shows the corre-
lations between human scores and the two kinds of 
machine scores. Extreme robustness of the struc-
tures and extreme weakness of the GOP are shown. 
We can say that even a single teacher’s structure can 
be used very effectively for learners of any size. 
 As GOP is a posterior probability, it internally 
has a function of canceling acoustic mismatch be-
tween HMMs and learners. But this function only 
works when forced alignment (numerator of GOP) 
performs well. With a large mismatch, however, this 
process fails. To avoid this, teachers' models (HM 
Ms) are often adapted to learners. If one wants to 
prepare the most adequate models for a specific 
learner, one has to train the models with that learner 
who would pronounce the target language correctly. 
 This technical requirement leads us to consider 
that GOP should stand for Goodness Of imPersona-
tion, which quantifies how well a learner can im-
personate the model speaker. But learning to pro-
nounce is not learning to impersonate at all. Young 
learners don’t impersonate their teachers but they 
acquire remarkably well the sound system underly-
ing their teachers’ utterances. In contrast, the cur-
rent framework of speech processing including ASR 
often captures and models given sounds directly as 
they are. Considering old and new findings in ani-
mal and infant studies, we can claim definitely that 
this strategy is much more animal than human. If 
one wants to build a human-like processor, what is 
needed is a method for good abstraction. What chil-
dren discard should be discarded also by machines. 
Speech structure is our answer for abstraction. 

6 Conclusion 

This paper describes speech structure with its un-
derlying philosophy and its several applications. We 
hope that our proposal will help researchers to ap-
proach the ultimate goal of understanding how we 
decode messages encoded in a speech stream. 
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