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Abstract 

In this paper, we investigate the effects and problems of 

MLLR speaker adaptation when applied to pronunciation 

evaluation. Automatic scoring and error detection experiments 

are conducted on two publicly available databases of Japanese 

learners’ English pronunciation. As we expected, over-

adaptation causes misjudge of pronunciation accuracy. Fol-

lowing these experiments, two novel methods, Forced-aligned 

GOP scoring and Regularized-MLLR adaptation, are proposed 

to solve the adverse effects of MLLR adaption. Experimental 

results show that the proposed methods can better utilize 

MLLR adaptation and avoid over-adaptation. 

Index Terms: Computer Assisted Language Learning (CALL), 

speaker adaption, pronunciation evaluation, goodness of pro-

nunciation (GOP), maximum likelihood linear regression 

(MLLR) 

1. Introduction 

One of the largest challenges in CALL system development is 

to deal with the acoustic mismatches between learners’ speech 

and the acoustic models. In ASR, speaker adaptation tech-

niques have been proved effective in reducing the model mis-

matches. However, instead of recognizing the intended words 

by the speaker, the purposes of CALL are to evaluate and de-

tect mispronunciations in learners’ speech. When conventional 

adaptation techniques are directly applied to the acoustic mod-

els used in CALL, the incorrect pronunciation might be recog-

nized as correct due to over-adaption. Although there are some 

studies using global adaption for CALL system to avoid over-

adaptation [1, 2], to the best of the authors’ knowledge, no 

quantitative analysis has been reported to investigate the ad-

verse effects of speaker adaptation. 

This study investigates the effects of conventional maxi-

mum likelihood linear regression (MLLR) speaker adaptation 

on pronunciation evaluation for CALL in two ways: automatic 

scoring and phoneme error detection. Based on the analysis 

results, we provide solutions to the over-adaption problem. 

Experimental results show the high validity of the proposed 

methods. 

2. Pronunciation evaluation with MLLR 

2.1. Automatic scoring 

2.1.1. Goodness of Pronunciation 

The confidence-based pronunciation assessment, which is 

defined as the Goodness of Pronunciation (GOP), is often used 

for assessing learners’ articulation and shows good results 

[3,4]. In this study, we use HMM acoustic models trained on 

WSJ and TIMIT corpus to calculate GOP scores defined as 

follows. For each acoustic segment 
)( pO of phoneme p, 

GOP(
)( pO ) is defined as posterior probability by the follow-

ing log-likelihood ratio. 
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where )|( )( pOpP is the posterior probability that the 

speaker uttered phoneme p given
)( pO , Q is the full set of 

phonemes, and
pD  is the duration of segment

)( pO . The 

numerator of equation 3 can be calculated by scores generated 

during the forced Viterbi alignment, and the denominator can 

be approximately attained by continuous phoneme recognition 

with an unconstrained phone loop grammar. 

Since the boundaries of phoneme p yielded from forced 

alignment do not necessarily coincide with the boundaries of 

phoneme q resulted from continuous phoneme recognition, the 

frame average log likelihoods of the same speech segment are 

often used in traditional GOP calculation [3]. 

2.1.2. Experimental results 

We use ERJ (English Read by Japanese Students) corpus [5] 

to measure GOP scores with MLLR adaptation. This corpus 

contains proficiency labels rated by phonetic experts. 42 learn-

ers (21 males and 21 females) with higher agreement among 

raters and a variety of proficiency were selected. The average 

phoneme GOP score over 30 sentences read by each learner 

are calculated as automatic score for the learner. 60 sentence 

utterances of each leaner were used as adaptation data.  

We investigate the correlations between GOP scores and 

human scores while increasing the number of the nodes of 

regression class tree. Here the number 0 means without adap-

tion, and 1 represents global adaption. As shown in Figure 1, 

global adaptation yielded the best correlation of 0.65, yet 

while the number of nodes of regression class tree increases 

from 2, the performance drops. When the number is larger  

Copyright © 2009 ISCA 6-10 September, Brighton UK608



no adaptation

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 1 2 4 8 16 32 64

Number of nodes of regression class tree

C
o
rr

e
la

ti
o
n

 
Figure 1: Correlations between GOP scores and manual 

scores as the number of classes in MLLR increases 

 

 than 4, the correlation is even worse than the original model. 

2.2. Phoneme error detection 

Because the ERJ database does not contain phoneme labels 

with erroneous pronunciation, we use another corpus of Eng-

lish words spoken by Japanese students. The database [6] con-

sists of 5950 utterances of 850 basic English words read by 

seven Japanese learners. This database contains manually an-

notated phonemic labels that were faithfully transcribed and 

include erroneous phonemes. This database has been used to 

evaluate the performances of acoustic models for CALL [7]. 

We used the utterances of 4 speakers (2 males and 2 fe-

males) with many typical errors of Japanese learners. 

2.2.1. Error detection network grammar 

One of the major methods to detect pronunciation errors is 

using pronunciation networks that include correct pronuncia-

tion and various error patterns to predict learners’ possible 

mispronunciations. By referring to [8], 12 major error patterns 

were defined and any irregular errors in the labels were added 

to the prediction networks. Although the error detection per-

formance highly depends on pronunciation networks and a 

larger network often results in lower detection precision, when 

the same network is always used, the relative increase or de-

crease of detection accuracy can be used to measure the per-

formance of the acoustic models with MLLR. 

2.2.2. Experimental results 

We used precision and recall rates defined as below to meas-

ure the performance of acoustic models with MLLR. 
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where 
hitN represents the number of the errors that were cor-

rectly detected , 
totalN  is  the total number of detected errors, 

FAN is the number of false alarms and 
labeledN  is the number 

of all the errors that were detected by phoneticians, and F-

measure defined as below is also calculated to combine the 

two measures. 

 
Figure 2: Error detection performances 
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Figure 2 shows the performances of error detection with 

adaption. Although the precision rates keep increasing when 

more transforms were used for adaptation, the recall rate drops 

when the number of nodes is larger than 2. This indicates that 

with adaptation to reduce model mismatches, the number of 

false alarms 
FAN drops significantly, thus the precision rate 

increases. However, since the number of 
labeledN  is only de-

cided by the label, the decrease of recall means the decrease of 

the number of correctly detected errors. This result shows that 

over-adaption can cause more errors to be recognized as cor-

rect pronunciation. In the following two sections, to solve the 

problem of over-adaptation, two novel methods are proposed 

and evaluated for automatic scoring and error detection. 

3. Forced-aligned GOP scores 

As mentioned in section 2.1.1, conventional GOP calculation 

refers to the results of both forced alignment and continuous 

phoneme recognition. This causes a problem as depicted in (a) 

of Figure 3, that 3 phonemes from detected by continuous 

phoneme recognition might correspond to one forced aligned 

phoneme p. In this case, GOP score for p is calculated using 

the log likelihood of p and average log likelihood of q1, q2 

and q3 within the segment of p. 

As an alternative way of calculating GOP score, we can 

first obtain the phoneme boundaries for phoneme p based on 

the result of forced alignment, and then calculated the poste-

rior probability of that segment using equation (3) directly. We 

call this method Forced-aligned GOP (F-GOP). This method 

refers only to the boundaries of forced alignment and actually 

separates the calculation of GOP score into two processes, one 

is detecting the phoneme boundaries and the other is calculat-

ing the posterior probability for that segment. We can use 

different models for the two processes. Because the ERJ data-

base does not contain labels with phoneme boundary informa-

tion, we couldn’t examine directly the improvement of bound-

ary detection by using adaptation, but we can still compare the 

result of conventional GOP and F-GOP with MLLR adapta-

tion. We tested different combinations of acoustic models for 

detecting phoneme boundaries and calculating posterior prob-

abilities. 
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Figure 3: Forced-aligned GOP method 
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Figure 4: Correlations between human scores and Forced-

aligned GOP, comparing with conventional GOP. 

 

 

 
Figure 5: Phoneme segmentation results, A) forced align-

ment, B) unsupervised bottom-up clustering, C) continuous 

phoneme recognition 

 

Figure 3 shows the results of three conditions: F-GOP1, which 

used the same models for both phoneme boundary detection 

and posterior probability calculation, F-GOP2, which used the 

adapted models to detect phoneme forced alignment bounda-

ries, and the original models to calculate posterior probabili-

ties, comparing with conventional GOP scores. 

As shown in Figure 4, two kinds of F-GOP outperformed 

the conventional GOP. We consider this is because F-GOP did 

not refer to the results of continuous phoneme recognition 

which is often unreliable. Figure 5 shows an example of pho-

neme segmentation results of A) forced alignment, B) unsu-

pervised bottom-up clustering and C) continuous phoneme 

recognition. In this example, the result of continuous phoneme 

recognition is even worse than segmentation based on unsu-

pervised clustering [9], which uses no prior knowledge at all. 

F-GOP2 shows better performance than F-GOP1, espe-

cially when the number of the nodes of regression class tree is 

larger than 2. The only difference between F-GOP1 and F-

GOP2 is that while F-GOP1 used the adapted models to calcu-

late posterior probabilities, F-GOP2 used the original models 

to evaluate the same phoneme segment. This indicates that 

with more transforms used for adaption, the “judgment” of the 

acoustic model becomes worse. By utilizing only the better 

phoneme alignment results based on the adapted models, F-

GOP can better benefit from speaker adaptation. 

 

4. Regularized-MLLR Adaptation 

The results of automatic scoring and error detection experi-

ments clearly show the adverse and good effects of MLLR 

adaptation on pronunciation evaluation. If we can solve the 

problem of “bad judgment” of adapted models, we might be 

able to achieve both better recall and precision. Regularized-

MLLR is one possible solution to this problem. 

4.1. Definition of Regularized-MLLR 

In order to regularize MLLR transformation so that the erro-

neous pronunciation will not be “transformed” to good 

pronunciation, we add constraints to conventional MLLR. 

  The standard auxiliary function for MLLR is defined as 

below to estimate the transform 
rW for each regression class r. 
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where M is the HMM model set, M̂   is the adapted model set, 

and R is the number of the nodes of regression class tree, 
r

M  

is the number of Gaussian components that is to be tied to-

gether, 
)(mK  subsumes all constants, and )(tL

rm
 is the occu-

pation likelihood that 
TO  is given from Gaussian component 

)(tq
rm

, 

),|)(()( Tmm OMtqptL
rr

=  .                           (8) 

 

Here we obtained a set of transforms estimated from a 

group of teachers who are native speakers of General English. 

Teachers’ transforms are used to constrain the transforms for 

the learners to avoid bad pronunciation being transformed into 

good pronunciation. 

Let },...,{ 1 NC

r

C

r WW denote a set of transformation ma-

trices estimated from a group of N teachers, and 

∑=
n

C

r

C

r
nWNW )/1( represents the mean of these matrices. The 

objective function for Regularized-MLLR is defined as 
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where λ  is a parameter depending on the acoustic characteris-
tics of the speaker. In conventional MLLR, 

rW is estimated by 
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maximizing )ˆ,( MMQ . In the proposed method, however, 

over-adaptation is avoided by the 2-nd term of Equation (9). 

This term functions as penalty of changing the model parame-

ters so radically. 

We assume diagonal covariance matrices and apply the 

adaptation only to the mean vector for each Gaussian compo-

nent, 

 

rr mrm W ξµ =ˆ     ,                                                        (10) 

 

where 
rm

ξ is the extended mean vector for the Gaussian com-

ponent rm , 

rmξ = [1 1µ  2µ  … dµ ]
T
,                                       (11) 

where d is the dimensionality of the data. 

Considering the row decomposition ];...;;[ ,2,1, drrrr wwwW = , 

Equation (9) can be decomposed into minimization of a set of 

cost functions related to jrw , , 
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The optimal jrw , is given by solving 
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which yields, 
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4.2. Experimental results 

We used 10 native teachers’ utterances of General English 

from the ERJ corpus to calculate the mean of transformation 

matrices, C

rW , to regularize transforms for Japanese learners.  

The parameter λ  was experimentally estimated for each of the 
4 learners.  

As shown in Figure 6, Regularized-MLLR improved the 

performance of recall rate and kept relatively high precision 

that were achieved by adaptation with more nodes of regres-

sion class tree. This indicates that by setting the right parame-

ter for each speaker, Regularized-MLLR can not only benefit 

from a lower number of false alarms due to mismatches, but 

also high ability to detect erroneous pronunciation is obtained. 
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Figure 6: Performances of acoustic models with Regular-

ized-MLLR(R-MLLR) and MLLR 

5. Conclusion 

This study analyzes the effects of MLLR speaker adaption on 

pronunciation evaluation based on experiments of automatic 

scoring and error detection on reliable databases. Forced-

aligned GOP and Regularized-MLLR have been proposed for 

automatic scoring and error detection. Experimental results 

show that the proposed methods can better utilize the merits of 

adaptation and reduce side effects of over-adaptation than 

conventional methods for CALL systems.  

For future work, we are working on automatic estimation 

of parameters for different learners and combine the two pro-

posed methods together. We are also planning on improving 

the Regularized-MLLR to better constrain transformation 

matrices for adaptation.  
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