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Abstract

Individuals with speaking disabilities, particularly people suf-
fering from dysarthria, often use a TTS synthesizer for speech
communication. Since users always have to type sound symbols
and the synthesizer reads them out in a monotonous style, the
use of the current synthesizers usually renders real-time opera-
tion and lively communication difficult. This is why dysarthric
users often fail to control the flow of conversation. In this pa-
per, we propose a novel speech generation framework which
makes use of hand gestures as input. People usually use tongue
gesture transitions for speech generation but we develop a spe-
cial glove, by wearing which, speech sounds are generated from
hand gesture transitions. For development, GMM-based voice
conversion techniques (mapping techniques) are applied to esti-
mate a mapping function between a space of hand gestures and
another space of speech sounds. In this paper, as an initial trial,
a mapping between hand gestures and Japanese vowel sounds
is estimated so that topological features of the selected gestures
in a feature space and those of the five Japanese vowels in a
cepstrum space are equalized. Experiments show that the spe-
cial glove can generate good Japanese vowel transitions with
voluntary control of duration and articulation.

Index Terms: Dysarthria, speech production, hand motions,
media conversion, arrangement of gestures and vowels

1. Introduction

For linguistic communication, dysarthrics have to convey their
messages to others without using tongue gestures. With sign
or written language, non-oral communication is possible but it
requires receivers with special sign language skills or the ability
of reading and writing.

We can find several technical products to support speech
communication of dysarthrics, which require no special skills
on the each of the receivers. Both Say-it/ [1] and Voice aids
[2] are portable PC based products, with which users can gen-
erate speech by touching sound symbols or word symbols. As
told above, however, these products often restrict the freedom
of conversation and dysarthrics are likely to lose the initiative
in conversation [3]. In [4], a dysarthric engineer developed a
unique speech generator by using a pen tablet. The F1-F2 plane
is embedded in the tablet. The pen position controls F1 and
F2 of vowel sounds and the pen pressure controls their energy.
Using this machine, he demonstrated with his fingers (not his
tongue) that he could generate vowel sound transitions livelily.
In his talk, he said that he disliked the current TTS systems be-
cause they forced him to speak always in a monotonous style.

Another example of speech generation from body motions
is [5]. With two data gloves and some additional wearing de-
vices, body motions are transformed into parameters required to
drive a formant speech synthesizer. But this system was devel-
opped for human-computer interaction, not for the handicapped.
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Figure 1: Media conversion based on space mapping

Recently, GMM-based speaker conversion techniques have
been intensively studied, where voice spaces of two speakers
are mapped to each other and the mapping function is estimated
based on GMM [6, 7]. This technique was directly and success-
fully applied to estimate a mapping function between a space of
tongue gestures and another of speech sounds [8]. In this study,
GMM was used to map two spaces of different media. This
result naturally lets us expect that a mapping function between
hand gestures and speech can be estimated well.

People usually use tongue gesture transitions to generate a
speech stream. But [4] and [5] showed that tongue gestures,
which are inherently mapped to speech sounds, are not always
required to speak. What is needed is a voluntarily movable part
of the body whose gestures can be technically mapped to speech
sounds. In [4] and [5], however, classical synthesizers were
used, i.e. formant synthesizers. Partly inspired by the remark-
able progress of voice conversion techniques and voice morph-
ing techniques [9] in this decade, we develop a GMM-based
hand-to-speech converter in this paper.

In the following sections, the development is described in
detail. As an initial trial of hand-to-speech conversion, however,
we only focus on Japanese vowel sounds. The most important
issue at this point is how to design the optimal correspondence
between vowels and hand gestures.

2. GMM-based media conversion
2.1. Estimation of a mapping function between two spaces

Fig.1 shows media conversion based on space mapping, where
hand gesture vector a is converted into speech cepstrum vector
b. The mapping function f in Fig.1 can be estimated by the
method proposed in [7]. For an aligned data set between a hand
gesture stream and a speech stream, augment vector z=[a, b]
is formed. Then, the distribution of z is modeled by GMM,
p(z) = M wiN (251, 25), where N (z; p;, ;) denotes
normal distribution of mean g, and covariance X; as below,
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Figure 2: Gestures of the Japanese five vowels
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M is the number of mixtures and w; is a weight for mixture 7,
here M w; = 1 and w; > 0.

The regression function f(a) is obtained by using the above
parameters and it approximates b.

a) =Y plila)[n?

where p(i|a) is a posterior probability of < th GMM given a.
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2.2. A preliminary experiment

As a preliminary experiment, hand to speech conversion was
implemented for vowel transitions such as /ai/ and /oe/. The
correspondence between the Japanese five vowels and hand ges-
tures was shown in Fig.2. These gestures were determined so
that a transition between any pair of vowels would not gener-
ate a third vowel. For training GMMs, a female adult recorded
gesture data for the isolated vowels and 5 P,=20 transitions be-
tween every two vowels using CyberGlove made by Immersion
Inc,. CyberGlove has 18 sensors and its sampling period is 10-
20 ms.! Every gesture was recorded three times. The total
number of gestures was (5420) x3=75. In addition, a male
adult speaker recorded speech for the five vowels and 5 P,=20
transitions between every two vowels. Speaking rate was ad-
justed to the transition rate of hand gestures. Each recording
was done five times. The total number of speech samples was
(54+20)x5=125. 18 dimensional cepstrum coefficients (in-
cluding power) were extracted by STRAIGHT [9], where the
frame length was 40 ms and the frame shift was 1 ms. Then,
for every possible combination between a gesture sequence and
its corresponding cepstrum sequence, after linear alignment be-
tween them, the distribution of augment vector z was estimated
based on GMM, where the number of Gaussians was one. Fi-
nally, the regression function f(a) was estimated. Fig.3 shows
the results for /ai/. (a) indicates a resynthesized speech sample
for vowel transition /ai/, (b) is a synthesized sample by using
closed hand gesture data as input, and (c) shows a synthesized
sample by using open hand gesture data. We used STRAIGHT
for waveform generation, where FO was fixed to be 140 Hz.
According to a simple listening test of all the kinds of vowel
transitions, we found that sounds of /i/, /u/, and /o/ were often
confusing. In the following section, we design the correspon-
dence between the five vowels and hand gestures so carefully
that all the vowel sounds become distinct enough.

3. Design of the optimal correspondence
3.1. Variation of human hand gestures

What kind of hand gestures are possible and what kind of com-
bination of five gestures is optimal for Japanese vowel produc-
tion? In the preliminary experiment, sounds of /i/, /u/, and /o/

I'Since the sampling period is variable, recorded data was interpo-
lated linearly in such a way that the sampling period would be constant.
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(b) hand to speech conversion with closed data as input

(c) hand to speech conversion with open data as input

Figure 3: Synthesized speech for vowel transition of /ai/
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Figure 4: The 28 basic hand gestures [10]

were often confusing and this implies that the gestures for these
sounds are close to each other in the hand gesture space. In
[10], 28 basic hand gestures were defined, which are shown
in Fig.4. These 28 gestures were generated as follows. A
hand has five fingers, each of which has two positions, high
and low. Then, we have 2°=32 combinations of five fingers,
among which some are impossible to form. By deleting them,
we can obtain 28 gestures. A female adult recorded gesture
data for these 28 gestures twice, 2x28=56 data in total. Us-
ing these data, PCA was conducted to project 18 dimensional
gesture data onto a two dimensional plane. The five gestures of
the preliminary experiment, each of which had plural samples,
were plotted on this plane (Fig.5). The five ovals represent re-
gions for the five gestures and a sample trajectory of /aiueo/ is
also plotted. As mentioned above, it is clear that the hand ges-
tures of /i/, /u/, and /o/ are very close to each other. To generate
distinct sounds for the individual vowels, we have to design an
appropriate correspondence between vowels and gestures.

3.2. Candidate sets of five hand gestures

We did the same PCA analysis for the 28 gestures shown in
Fig.4 and the results are shown in Fig.5. Numbers in Fig.3.2
correspond to those in Fig.4. The gestures in the central purple
region require special efforts to form and the remaining ges-
tures are divided into five groups, A to E. By referring to the
F1/F2 vowel chart of Japanese (See Fig.3.2), we assigned the
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Figure 5: The five vowels in the preliminary experiment
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Figure 6: (a) The location of 28 gestures in PCA space, (b) the
vowels chart of the five Japanese vowels

Table 1: Proposed 16 combinations of hand gestures

No. | /a/ /il /u/ /el ol || No. | /a/ /i/ u/ [el lo/
1 8 14 2 11 1 9 2214 2 11 1
2 |8 14 2 131 10 {2214 2 13 1
3 8 14 16 11 1 11 |22 14 16 11 1
4 | 8 1416 13 1 12 122 14 16 13 1
5 8§ 28 2 11 1 13 12228 2 11 1
6 | 8 28 2 13 1 14 12228 2 13 1
7 8§ 2816 11 1 15 {2228 16 11 1
8 8 28 16 13 1 16 | 22 28 16 13 1

five vowels to the five region so that topological features of the
five gestures in the gesture space and those of the five vowels
would be equalized. For simplicity, we chose No.1 from group
A and, from each of the other groups, we selected two gestures
which are easier to form than the others in that group. Thus, the
number of gestures we choose was nine in total. Tab.1 shows
all the 16(=2%) combinations we selected and, out of these, we
had to select the optimal one. To compare two topological pat-
terns in different media, we used structural representation of
sequence data [11, 12, 13].

3.3. Structural representation and comparison

Since speaker difference can be characterized as space mapping,
mapping-invarinat features can be used as robust speech fea-
tures of speech systems such as speech recognizers. [11, 14]
showed that f-divergence between two distributions is invari-
ant with any kind of invertible and differentiable transforms.
In [11, 14], using Bhattacharyya distance (BD) as one of the
f-divergence based distance measures, an utterance was struc-
tually represented, shown in Fig.7. A cepstrum sequence is
automatically segmented and converted into a distribution se-
quence. Subsequently, an utterance is characterized as a total set
of BDs, namely, distance matrix. Although this distance matrix
is mapping invariant, by imposing some constraints, we intro-
duce constrained invariance [15]. For example, if a distribution
is assumed to be a Gaussian, the matrix is invariant only with
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a vowel structure

Figure 8: Structural matching between two matrices

linear transforms. In this study, a hand gesture sequence is rep-
resented as a structure (distance matrix) and a vowel sequence
is also represented as another structure. Here, we assumed that
the mapping function should be approximately linear. Then, we
tentatively investigated whether the structural difference [11] an
utterance matrix and a gesture matrix calculated with each of
the 16 candidates in Tab.1 could work as evaluation function.
The smaller the difference is, the better the candidate will be.
Here, an utterance of /aiueo/ was used. Its distance matrix was
compared to all the 16 gesture matrices of the 16 candidates.
Following [15], the number of distributions was set to 25.

The structural difference between two matrices is calcu-
lated as Euclidean distance between two vectors, each of which
is formed by using all the elements of the upper triangle of a
distance matrix. This simple measure can approximate well
the minimum of total distance between the corresponding two
points after shifting and rotating a structure (matrix) so that
the two structures are overlapped the most optimally [11] (See
Fig.g).

3.4. Results and discussions

Fig.9 shows the structural distances between an /aiueo/ utter-
ance and a few candidates. The average distance over the 16
candidates and the distance of the hand gestures used in the
preliminary experiment are also shown. Among the 16 candi-
dates, No.5 shows the smallest distance and No.14 the largest.
10 Japanese adults participated in a listening test for five non-
sense words, all of which were comprised of the Japanese five
vowels such as /auoei/ and /oeiau/. The subjects were asked to
transcribe the individual vowels. For each word, four versions, a
re-synthesized sample, two synthesized samples with No.5 and
No.14, and another synthesized one with the preliminary design
were presented. The total number of non-sense word utterances
was 20 and the total number of vowel sounds was 100. By ran-
domizing the order of presentation, the 20 words were presented
through headphones. The vowel-based intelligibility was 100%,
99.6%, 99.2%, and 95.2% for re-synthesized, No.5, No.14, and
the preliminary design, respectively. Fig.10 shows the spectro-
grams of (a) re-synthesized, (b) No.5, (c) No.14, and (d) the
preliminary design.

We can detect a small difference between (b) and (c) but a
large one between the two and (d). The above results indicate
that an adequate selection of hand gestures improves well the
intelligibility and the distinctness of synthesized vowel sounds.
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Figure 9: The structural distances for several sets of gestures

The preliminary design

(c) Synthesized speech by No. 14

(d) Synthesized speech by preliminary design
Figure 10: Comparison between proposed designs for /aiueo/

Not a small difference was found between No.5 and No.14 in
Fig.9 but the difference was not perceived well auditorily and
visually. In this paper, we cannot claim that the structural dif-
ference is a good enough measure when selecting a gesture set
out of candidates. However, a certain measure to estimate the
goodness of gestures is needed because, without that, a large
number of listening tests are required to decide the optimal set
of gestures. It is sometimes difficult to know in advance which
parts of the body of a handicapped person are voluntarily mov-
able. A good method to design a set of gestures automatically
has to be devised in future work.

Finally, Fig.11 illustrates the spectrograms which were
made by using (a) distinct (articulate) hand gestures and (b)
ambiguous (inarticulate) hand gestures.” These speech samples
were synthesized based on No. 5. By comparing (a) with (b)
visually and auditorily, we can claim that our hand-to-speech
generator can control the degree of articulation very easily.

4. Conclusion

We implement a speech synthesizer from hand gestures based
on space mapping. By considering the topological equivalence
between the structure of hand gestures in a gesture space and
that of vowel sounds in the vowel space, we demonstrate how
a quasi-optimal correspondence can be obtained. In the future,
we will reconsider how to use the structural representation for
automatic selection of the gestures and consider how to gener-
ate consonant sounds as well as prosodic features based on this
framework.

2Readers can find wav files and movie files in the following link.
http://www.gavo.t.u-tokyo.ac.jp/"kunikoshi/index.html
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(b)

Figure 11: Hand-to-speech generation in two styles (a) articu-
late (b) inarticulate
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