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Abstract

One of the most challenging problems in speech recognition
is to deal with inevitable acoustic variations caused by non-
linguistic factors. Recently, an invariant structural representa-
tion of speech was proposed [1], where the non-linguistic vari-
ations are effectively removed though modeling the dynamic
and contrastive aspects of speech signals. This paper describes
our recent progresses on this problem. Theoretically, we prove
that the maximum likelihood based decomposition can lead to
the same structural representations for a sequence and its trans-
formed version. Practically, we introduce a method of discrim-
inant analysis of eigen-structure to deal with two limitations of
structural representations, namely, high dimensionality and too
strong invariance. In the 1st experiment, we evaluate the pro-
posed method through recognizing connected Japanese vowels.
The proposed method achieves a recognition rate 99.0%, which
is higher than those of the previous structure based recognition
methods [2, 3, 4] and word HMM. In the 2nd experiment, we
examine the recognition performance of structural representa-
tions to vocal tract length (VTL) differences. The experimental
results indicate that structural representations have much more
robustness to VTL changes than HMM. w Moreover, the pro-
posed method is about 60 times faster than the previous ones.
Index Terms: Speech recognition, invariant structure, PCA,
discriminative analysis

1. Introduction

Speech recognition is a task to extract only the linguistic/text
information from speech signals. However, speech signals in-
evitably include the acoustic variations caused by non-linguistic
factors, such as speaker, communication channel and noise. The
same text can lead to different acoustic observations due to dif-
ferent speakers and different enviroments. This poses a chal-
lenging problem for speech recognition. To deal with these
variations, modern speech recognition approaches mainly make
use of the statistical methods (such as GMM, HMM) to model
the distributions of the acoustic features. These methods always
require a large amount of data for training and can achieve rel-
atively high recognition rates when there is a good match be-
tween training and testing data. But their performances always
decrease significantly when mismatched. Contrary to this is
children’s spoken language acquisition. A child does not need
to hear the voices of thousands of persons before he (or she)
can understand speech. This fact largely indicates that there
may exist robust measures of speech which are nearly invariant
to non-linguistic variations. We consider it is by these robust
measures that children can learn speech with very biased train-
ing data from mothers and fathers. This is also partly supported
by recent advances in the neuroscience, which shows that the
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linguistic aspect of speech and the non-linguistic aspect are pro-
cessed separately in the auditory cortex [5].

Inspired by these facts, the third author of this paper pro-
posed an invariant structural representation of speech signals
which aims at removing the non-linguistic factors in speech sig-
nals [1]. Different from classical speech models, the structural
representations make use of invariant Bhattacharyya distances
(or f-divergence in general [9]) to model the contrastive and
dynamic aspects of speech and discard the static features. We
have demonstrated the effectiveness of this novel representation
in automatic speech recognition [2, 3], speech synthesis[6], and
computer aided language learning (CALL) systems [7].

This paper describes our recent progresses on invariant
structure for speech representation. To construct two struc-
tural presentations from a sequence and its transformed version,
we also need to decompose them in an invariant way. In this
paper, we prove that maximum likelihood estimation provides
such an invariant decomposition. In addition, we introduce a
method called discriminant analysis of eigen-structure to im-
prove the performance of structure based speech recognition.
We carried out experiments to examine the proposed methods
on recognizing connected Japanese vowels. The results show
that the proposed method not only achieves higher recognition
rates but also largely reduces the computational time of clas-
sification than the previous structure based speech recognition
methods [2, 3]. We also examined the performance of structural
representations and HMM to the change of vocal tract length by
using artificially warped data. The structure demonstrates much
more robustness than HMM.

2. Invariant structure for speech

In this section, we firstly give a brief overview on structural rep-
resentation for speech, and then prove how maximum likelihood
decomposition can lead to invariant structures.

2.1. Theory of invariant structure

Consider feature space X and pattern P in X. Suppose P is
composed of a sequence of K events {pl}fil Each event is
described as a distribution p;(z) in the feature space. Note z
can have multiple dimensions. Assume there is an invertible
transformation h : X — Y (linear or nonlinear) which converts
x into y. In this way, pattern P in X is mapped to pattern @) in
Y, and event p;(x) is transformed to event g;(y) (Fig. 1). Thus
if we can find invariant metrics in both space X and space Y,
these metrics can yield robust features for classification.

Under transformation h, p(z)dz q(y)dy and dy
|®(z)|dz, where ®(z) denotes the determinant of the Jacobian
matrix of h. Thus we have ¢(y) = q(h(z)) = p(z)|®(z)| ™ .
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Figure 1: Invariant structures D¢ = DT

Consider f-divergence [8] defined as,

pi(z)
D pi,p~:7§p'xf< >dx,

f ( ]) J ( ) P; ( l’)
where f : (0,00) — R is areal convex function and f(1) = 0.
Many well known distances and divergences in statistics and
information theory such as KL-divergence, Bhattacharyya dis-
tance, Hellinger distance etc., can be seen as special cases or
the functions of f-divergence measure. We can examine the

invariance of f-divergence [9] as
qi(y)) dy

Dy (gi,q5) = qu(y)f (qj(y)
pi(z)|®(x)| "

i@ (EO
- %pj(x)f (iji‘z;) dx = Dy (pi, pj)-

We also proved that all invariant integration measures
$ M (pi, p;)dz must be written into the form of f-divergence
[9]. We can obtain an K x K divergence matrix DF with
DT (3,5) = Dy (ps, p;) and DT (i, i) = 0. Then DT provides a
structural representation of pattern P. Similarly, we can obtain
structure representation D for pattern Q. Then we have that
D = DF, which indicates that the structural representation
based on f-divergence is invariant to transformations.
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2.2. Construction of structural representation

In order to calculate a structural representation from a se-
quence, we need to decompose it into a set of distributions
at first. For continuous speech signals, there don’t exist ex-
plicit marks for sequence segmentation (decomposition). In this
paper, we make use of maximum likelihood (ML) estimation
of HMM to decompose a sequence into a set of distributions.
Let X = [z',2?%,...,27] denote a sequence of speech signals,
where z* represents the ¢-th frame vector, and T is the length
of X. Assume the HMM contains K states and its parameters
are denoted by A = {m, A, B}, where m = {m} denotes a set
of the initial probabilities of k-th state, A = {a;;} represents
the transition probability from i-th state to j-th state, B = {b;}
represents the parameters of the output distribution p(z|b;) for
i-th state. We calculate f-divergences between every two distri-
butions in set {p(x|b;)} for constructing an invariant structure.
The objective of ML estimation is to determine the parameters
which maximize likelihood A = arg maxa L(X, A). The like-

lihood function is given by,
L(X,A) =p(X|A) = > p(X,S|A)
ses

7271'51 H Ast,s¢41 Hp

Ses t=1

bs,), )

) | (2)|dx
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where S [s1,82,..., 87| denotes a sequence of states,
and S denotes a set of possible state sequences. Let Y
[v*, 4%, ...,y"] denote the transformed sequence of X, where
y* = h(x"). We can also apply the HMM decomposition on Y.
There is a question whether the HMM decomposition of X and
Y will lead to the same structure or not. Actually, this can be
ensured by the following theorem.

Theorem 1 Consider two sequences X and Y with invertible
transformation h between their frame vectors y* = h(z"). Let
AX = (7%, AX BXY denote a set of optimal parameters of
ML estimation (Eq. 3) for sequence X. Then there must exist a
set of optimal parameters AY = ={x 7Y AY BY } for sequence
Y, that satisfies the following equatlons

A =7, AN =AY, and p(a|b’)|®(x)| 7" = p(ylb ).
@

Proof Let AY = {n¥, AY B} denote a set of parameters
of an HMM for Y. For any p(y|b} ), there is a corresponding
p(z|bX) such that p(y|bY ) = p(z|b¥)|®(z)|~:. We can cal-
culate the likelihood of A* as follows,

LY,A") =" =, H A Hp (y'los;)
ses  t=1
—Zﬂsl Has“sf+1 Hp )|71
ses  t=1
—Hl@ )T LX, AT, ®)
where AX = {#¥,AY BX} and BX = {bX}. Note

the first term Hthl |®(2")|~* only depends on transforma-

tion h and is independent of parameters AX. Since AX
argmax,x L(X, A) is an optimal parameter set, we have

T
Yy _ -1 X

max L(Y, A )—r%gxg@(wt)l L(X,A%). (6

We can examine that the parameter set AY given

by Eq. 4 maximizes the likelihood, L(Y,AY)
[T, [®(z:)] " L(X,AY) = max,y L(Y,AY). Thus AY is
a set of optimal parameters.

A quick inference of Theorem 1 is that for two sequences under
a transformation, their structural representation constructed by
ML decomposition must be the same, too. It is noted that to
find global ML estimation can be difficult, since the famous
EM training of HMM (Baum-Welch algorithm) can lead to local
optimization. In our experiments, the structures obtained by
local optimization proved to be sufficiently effective.

In practice, we construct a structural representation from an
utterance by the following procedure (Fig. 2). At first, we cal-
culate a sequence of cepstrum from input speech waveforms.
Then an HMM is trained from a single cepstrum sequence and
each state of HMM is regarded as an event p;. Thirdly we cal-
culate the f-divergences between any two events. These diver-
gences will form a K X K symmetric distance matrix D with
zero diagonal. We can expand the non-diagonal (nonzero) parts
of D into to a structural vector z, which yields the structural
representation.
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Figure 2: Framework of structure construction.
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3. Discriminant analysis of eigen-structure

The most attractive property of structural representation is its in-
variance to transformation on feature space, which allows us to
remove the non-linguistic factors in speech recognition. How-
ever, there are two limitations for directly using structural rep-
resentations for speech recognition: too strong invariance and
too high dimension. In the next, we propose a method of dis-
criminant analysis of eigen-structure method to deal with both
the limitations. The diagram of this method is shown in Fig. 3.

The invariant structures discard the non-linguistic informa-
tion in speech signals. On the other hand, since the structure
is invariant to any invertible linear or nonlinear transforma-
tions, some linguistic information, which is useful for recog-
nition, may also be discarded. This is called “too strong invari-
ance problem”, which decreases the recognition performance of
structural representation [3]. To overcome the first limitation,
we need to reduce the too strong invariance and to find a rich
representation which provides sufficiently discriminative infor-
mation for classification. Our previous work [3] introduced a
multiple stream structuralization method to deal with this prob-
lem. We divide a speech stream into several sub-streams ac-
cording to the dimensionality of cepstrum features, and calcu-
late Bhattacharyya distances for each sub-stream, as shown in
Fig. 3. Geometrically speaking, this equals to decomposing the
feature space into several sub-spaces and construct a structural
representation in each subs-space [3].

The structure has a high dimension. Let K denote the num-
ber of distributions and n is the number of streams. Then, the
dimensionality of its structural representation is O(nK?). The
high dimensionality not only increases the computational cost
and but also makes it difficult to train robust classifiers (known
as the curse of dimensionality problem [10]). On the other
hand, the f-divergences are highly correlated features (think-
ing dy, p,; can be largely effected by dp,,p, and dp,,p,). This
fact makes dimension reduction possible. We applied Princi-
pal Componenet Analysis (PCA) to the structure vector of each
stream to obtain a low dimensional ( 1—10 of the original dimen-
sion in our experiments) vector for it. Then we joint these low
dimensional vectors of all the streams to a eigen-representation.

Although PCA can significantly reduce the dimensionality
of structure vectors, it doesn’t take account of the category in-
formation. Sometimes PCA actually smears the classes together
so that eigen structure vectors are not linearly separable. For
this reason, we apply Fisher discriminant analysis (FDA), also
known as linear discriminant analysis (LDA) [11] to calculate
a more discriminative representation. The final classification is
made with this compact and discriminative representation.

4. Experiments

We carried out experiments on the connected Japanese vowel
utterances database [3] to evaluate the performances of the

3057

Distributionl ~ Distribution2 Distribution K
|cll|cﬁ ...|cl"| |c21‘c24 ...|c2‘| |cK‘|cK1 | cK"‘
I l ; ] | ‘
|

&

Structured

Structure 1 Structure2

PCA
\
| »] ] ¥ |

=

\%

| Linear Discriminant Analysis |

Figure 3: Multiple stream structuralization.

e

Recognition rate

1 2 3 4 5 6 7 8
Number of training speakers

Figure 4: Comparison of the recognition rates of different num-
bers of speakers in training data.

proposed Discriminant Analysis of Eigen-Structure (DAES) in
Section 3. Each word in the database corresponds to a combi-
nation of the five Japanese vowels ‘a’,‘e’,‘i’,’0” and ‘u’, such as
‘aeiou’,‘uoaei’, ... . So there are totally 120 words. It is noted
that compared with consonant sounds, vowel sounds usually ex-
hibit larger between-speaker acoustic variations. The utterances
of 16 speakers (8 males and 8 females) were recorded. Every
speaker provided 5 utterances for each word. Totally the num-
ber of utterances is 16 x120x5=9,600. Each structure includes
25 distributions, and each distribution is described by a 13D
Gaussian distribution with a diagonal covariance matrix. Fol-
lowing [3], we divide the 13D cepstrum+ 13D delta cepstrum
feature vectors into 13 multiple sub-streams with block size 2.
We calculate the structural vectors for each sub-stream with BD.
(We also conducted experiments on KL-divergence. The results
are very similar and thus omitted.) Each structural vector be-
fore PCA has a dimensionality of 25x24/2=300. We change
the number of training speakers from 1 to 8, and the results are
shown in Fig. 4. Although the recognition rate slightly drop as
the number of speakers decreases, we obtain a recognition rate
98.0% with only four training speakers.

We compare the recognition rate of our method with those
of the previous structure-based recognition methods, such as,
multiple stream structuralization modeling (MSS) [3], two
stage LDA (2-LDA)[4], random discriminant structure analysis
(RDSA) [2], and word HMM. For each method, we use 4,800

Table 1: Comparisons of recognition rates
DAES | 2-LDA[4] | MSS[3] | RDSAJ[2]
99.0% 98.6% 95.3% 98.3%

Method
Rate

HMM
98.3%




utterances from 4 male and 4 female speakers for training and
the other 4,800 utterances for testing. Results are given in Ta-
ble 1. The proposed method can achieve the highest recognition
rates among them. Moreover, it is much faster than the previous
structure-based recognition methods. The computational time
for classification is only about 1/60 of MSS and 1/65 of RDSA.

In the next, we examine the robustness of structural rep-
resentations with respect to the change of vocal tract lengths
(VTL). The difference of VIL is a major cause of the non-
linguistic variations. And this difference can be modeled by
warping the frequency axis of the power spectrum of the speech
signals [12]. Let w denote angular frequency of a base speaker
and @ angular frequency of another (warped) speaker (0 <
w,w < ). One popular warping function has the following
form [12],

Y —a

Jjo __
1—eiva’

e @)
where « represents a warping parameter (—1 < a < 1). With
negative/positive values of «, the VTL is lengthened/shortened.
a = —0.4/ 4 0.4 approximately doubles/halves the VTL. As
it is very difficult to gather speech corpus with large VTL vari-
ances in practice , we artificially generate utterances with var-
ious VTLs by applying the warping function Eq. 7 on each
utterance in the above Japanese vowel word database. We set
warping parameter o as -0.4, -0.35, ..., 0,..., 0.4. For each
«, we conduct matched and mismatched experiments. In the
matched experiment, both training and testing data are warped
under the same «, while in the mismatched one, only testing
data are warped. Since the warping function Eq. 7 are ap-
plied for FFT cepstrum features, we made use of 17 dimen-
sional cepstrum vectors in this experiment. KL-divergence is
used to calculate structural representations. (Experiments with
BD show very similar results.) We compared the recognition
performance between structural representations and HMM. The
results are shown in Fig. 5. We carried out another experiment
with speaker-independent triphone HMMs, which were trained
with 4,130 speakers [13] and were tested against the utterances
warped with o« = 0.33. The rate was 1.4%, by far lower
than that of the structures (90.0%), trained only with 8 speak-
ers. As one can see, structural representations obtain higher
recognition rates in matched and mismatched experiments for
every o Especially, in the mismatched case, the recognition
rates of HMM will drop significantly when |a] is large; on
the other hand, structural representations show significant better
rates when compared with HMM. This indicates that structural
representations are much more robust with the change of VTLs.

5. Conclusions

We study the invariant structural representation for speech
recognition. The contributions of this paper are two aspects.
Theoretically, we prove that maximum likelihood decomposi-
tion will lead to the same structures for a sequence and its trans-
formed version. This result yields an important basis for con-
structing invariant structures. Practically, this paper proposes
the discriminant analysis of eigen-structure for speech recog-
nition. In this method, too strong invariance of structural rep-
resentation is relaxed adequately by constructing structures for
each stream of speech signal. PCA and FDA are used to re-
duce the dimension and to obtain a discriminative representa-
tion. Experiments show that our method achieves a recognition
rate (99.0%) on a connected Japanese vowel database, which
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Figure 5: Word recognition rates for warped utterances.

is higher than the results of our previous structure based meth-
ods [2, 3, 4], and word HMMs trained with the same database.
We also found that the proposed structural representation show
much higher robustness to the change of vocal tract length when
compared with HMM.
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