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ABSTRACT

This paper introduces a model of Mixture of Probabilistic Linear
Regressions (MPLR) to learn a mapping function between two fea-
ture spaces. The MPLR consists of weighted combination of sev-
eral probabilistic linear regressions, whose parameters are estimated
by using matrix calculation. The mixture nature of MPLR allows
it to model nonlinear transformation. The formulation of MPLR is
general and independent of the types of the density models used.
Two well-known GMM-based mapping methods for voice conver-
sion [1, 2] can be regarded as special cases of MPLR. This unified
view not only provides insights to the GMM-based mapping tech-
niques, but also indicates methods to improve them. Compared to
[1], our formulation of MPLR avoids solving complex linear equa-
tions and yields a faster estimation of the transform parameters. As
for [2], the MPLR estimation provides a modified mapping function
which overcomes an implicit problem in [2]’s mapping function. We
carried out experiments to compare the MPLR-based methods with
the traditional GMM-based methods [1, 2] on a voice conversion
task. The experimental results show that the MPLR-based methods
always have better performance in various parameter setups.

Index Terms— Space mapping, mixture model, linear regres-
sion, non-linear transform, voice conversion

1. INTRODUCTION

To find a mapping function between two feature spaces is a funda-
mental problem in many signal processing and pattern recognition
problems. In speech engineering, a mapping function from the cep-
strum feature of a source speaker to that of a target speaker can be
used for voice conversion. In this paper, we propose a model called
Mixture of Probabilistic Linear Regressions (MPLR) for learning the
mapping function. The MPLR is made up of several Probabilis-
tic Linear Regressions (PLR), whose parameters can be optimized
through matrix calculation. The mapping function of MPLR is a
weighted summation of the PLRs, where the weights depend on in-
put samples. The MPLR is based on a similar linear calculation to
PLR, however, it can deal with nonlinear transformations due to its
mixture nature. Moreover, MPLR has such a flexible form that it
doesn’t need to specify the form of the density function.

We find that both of the two GMM-based mapping techniques
[1, 2], which have been widely used for voice conversion, can be
related to our MPLR. The difference between them comes from the
density model and the hidden parameters used for parameter esti-
mation. This unified view (MPLR) not only yields insights to the
GMM-based mapping methods but also provides methods to im-
prove them. As for [1], the formulation of MPLR yields a faster
and more direct calculation of the mapping parameters without solv-
ing complex linear equations. We find the method of [2] includes an
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implicit problem in its mapping function, and introduce a modified
method to estimate the mapping parameters based on MPLR. We
conduct comparison experiments between the MPLR-based meth-
ods and the traditional GMM-based methods on a voice conver-
sion task. The results show that our MPLR-based methods have the
least cepstrum distortion in various conditions. Although similar in
names, our method is different from the Mixture of Linear Regres-
sions (MLR) proposed in the context of statistics [3]. Different from
our method, MLR doesn’t make any use of the density of the source
data. MPLR is also different from Maximum-likelihood stochastic-
transformation (MLST) [4] for speaker adaption of HMM. Unlike
MPLR, the prior probability of MLST is calculated as the joint prob-
ability of mixture index and LR index.

2. LINEAR REGRESSION

Generally speaking, estimation of a mapping function can be seen
as a regression problem [5, 6] from a source space to a target space.
Let x denote a source vector with dimensionality n, and y denote
a target vector with dimensionality m. The objective of regression
is to estimate a mapping function y = f’(z). Assume we have a
set of training samples {xi,yi}f:l. Let X = [z1,22,...,21] and
Y = [y1,¥2,...,yr]. By minimizing the least squared error, the
optimal mapping function can be estimated by arg mins >, |yi —
f(z;)|*>. Assume f has a linear form. The problem reduces to a
linear regression (LR) [5],

yi = Bx; +b. (1)

In this paper, we only consider unbiased linear regression, that is,
Ely] = BE[x] + b. With argument vector &; = [z} ,1]7, Eq. 1 can
be simplified to y; = A#;. Minimizing the summation of squared
error (MSE), we have

. L2
argmf{nz lys — AZ;|”. 2)

If we set p(y|i:, A) = (2mo?)~™/2 exp(— g2z [y — A#|), the
above Eq. 2 is essentially the same as the following maximum like-
lihood estimation arg maxa [ [, p(y:|:, A).

Let X = [1, &2, ..., 1]. The optimal A for Eq. 2 can be calcu-
lated by using matrix calculation,

A=yXT(XXx")~". (3)

MSE of LR is an unbiased estimator. And according to Gauss-
Markov theorem [6], among all the unbiased linear transformations,
the MSE transformation of Eq. 2 has the minimum variance. For
this reason, it is sometimes called the best linear unbiased estimator
(BLUE).
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The MSE objective function Eq. 2 of LR treats each training
sample equally. In Probabilistic Linear Regression (PLR), we con-
sider weight p; for ;. Note in this paper, p; has not to be always
a probability of x;, and p; can be a conditional probability of trans-
form A given z;. The optimal objective of PLR estimation is formu-
lated as,

. L2
argngnz:pl\yl Az “)

Define a diagonal matrix P, whose diagonal is [p1, p2, ..., pr]. The
optimal A for PLR can be calculated by,

A=ypPXT(xXpPX")"". )

3. MIXTURE OF PROBABILISTIC LINEAR
REGRESSIONS

Although LR is simple, many real problems include nonlinear trans-
formations which cannot be approximated well by a linear one. Per-
haps the simplest idea to deal with nonlinear transformation is to
divide the feature space .S into several blocks and calculate a linear
transformation for every block. According to Taylor theorem, there
must exist a good linear approximation for each block if the division
is fine enough. Statistically speaking, division of .S’ can reduce bias
of the estimated mapping. However, the hard and deterministic di-
vision of the feature space into blocks can be difficult. Especially,
when the feature space has high dimensions and the number of train-
ing samples is limited, it is usually difficult to obtain enough train-
ing samples for each block. For this reason, instead of hard division
of the feature space, we consider a probabilistic and soft division,
which leads to the following Mixture of Probabilistic Linear Regres-
sions (MPLR).

3.1. Formulation of MPLR

This section describes a short introduction on the formulation of
MPLR. Let us consider K ‘virtual spaces’ {Sk } 1, (Fig. 1), each of
which has the same size as the source feature space. We use p(z|k)
to represent the density of z in Sy. The densities {p(x|k)} yield in-
formation for soft division. Then we estimate a PLR y = A2 (Ax
denotes the transformation matrix) for Si. The final regression is a
weighted combination of all PLRs, where the weights are given by
posterior probability p(k|z). p(k|x) represents a conditional proba-
bility of Si, given x. Formally, we have

K
y' = Fupr(z) = Zp(k|m)Ak£ (6)
k=1

Given density p(z|k), posterior p(k|x) can be calculated by using
the Bayes’ theorem,

wrp(x|k)

32 wip(ls)’

where wy, = p(k) denotes a prior probability of the k-th PLR or Sk,
and Y, wp = 1.

The diagram of MPLR is depicted in Fig. 1. MPLR avoids the
hard division of feature space, and makes effective use of all training
data for estimating the transformation parameters of each PLR. It is
noted that MPLR doesn’t make any special assumption on the form
of p(z|k), it can be Gaussian, Gaussian mixture, uniform, Gamma
etc.. And it doesn’t include any specification on how p(z|k) can be

p(klz) = (7

(Gray level for
density p(x|k) )

Fig. 1. Diagram of mixture of probabilistic linear regression

Mix. Of Prb. Linear Regression

estimated. Just take two examples. We can estimate p(z|k) from
2 only using certain mixture models. Or we can calculate the joint
probability p(z, y|k) at first and then estimate p(x|k) as a marginal
probability p(z|k) = [ p(z,y|k)dy. Note these two estimations
will practically lead to different p(z|k) as the second density estima-
tion accounts for the joint relation between = and y. This flexibility
allows us to design a specific form of p(x|k) for a certain problem.

Generally, the calculation of p(z|k) and p(k) is a density esti-
mation problem, which has been widely addressed in statistics and
pattern recognition. As we consider mixture model here, EM algo-
rithm provides an effective tool for estimation [7]. So in the next, we
assume that p(x|k) and p(k) are given, and our problem reduces to
estimate the transformation matrix Ay of PLR in Eq. 6 from train-
ing data set {x;,y;}1_,. For convenience, let p; 1, = p(x:|k) and
riw = p(klxs) = % Define matrix Ry, with diagonal as
diag(Ry) = [r1,k, 72k, -, 71,x]. The MSE estimation Eq. 6 is de-
fined as,

arg min 2 lys — Faeir ()]

=y =Y e =SS ranly — AP (®)
i k i k

This is a linear optimization problem which can be solved directly.
Let Xi. = [leki'l, 7‘2_]1&6‘2, ce T']_’ki‘[] and X = [XlT, XQT, ey X};]T
The optimal transform matrices { A} } for Eq. 8 are given by

[AT, A5, ..., Ay] = YXT(XXT) 7L, )

However, this is computationally expensive and can lead to biased
PLR. Here we consider a fast and approximate calculation. Take r;
as a weight for x; in Si. Assume each PLR is unbiased Z LT kYD =
>, ik Ads. We approximate Eq. 8 as

arg min 3737 rilyi — Awif* (10)

According to Jensen’s inequality, Zk(wktk)Q < > Wit
(>, wr = 1land 1 > wg > 0). The Eq. 10 is an upper bound of
Eq. 8. Recalling the optimal solutions of PLR Eq. 4 5, we calculate
optimal Ay, for Eq. 10 as,

Ar = YR XT(XR,XT)"". an
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The optimal Ay, depends on training data {x;,y;} and r; 5, whose
values can be estimated from the density models p(x|k) and p(k).
Although Eq. 11 is only an approximately optimal answer for Eq.
8, we surprisedly found that the approximate Eq. 11 has a bit better
performance on testing data than Eq. 9 in our experiments. We think
this is because Eq. 9, which directly optimizes Eq. 8, may overfit
the training data, and can lead to biased PLRs.

In the next, we will decompose the transformation Az (Eq.
11) into another familiar form by using the conditional means and
covariance matrices. Firstly, define the conditional means of x and
yon S as,

E:mw“ (12)
ZTz kYi, (13)

where N, = Z ri,, 1s used for normalization. Since our PLR
is unbiased, we have yr, = ApZ R,,- Then define the conditional
covariance matrix and correlation matrix of x and y on Sy, as,

Epei2)[2]) (& — Epgija [2]) 7]
—zr,)", (14)

TRy, = Epria [z

Ry, = Epa)ly] =

Vity = Byl (2 —

= Nik le 7,k (

Vi, = Epia (v —

= Nik Z i

Using Eq. 12, Eq. 13, Eq. 14, and Eq. 15, we obtain

“Nx—Tr,). (16)

Ti — TRy, ) (i

Epelay W) (@ = Epijay2])’]

yi — Ur, ) (i — Zr, )" (15)

Ax2 = yr, + Vi, (Vi,,)

In the remainder of this section, we show both of the two well-
known voice conversion methods: GMM-based mapping [1] and
GMM of joint vector density based mapping method [2] can be re-
garded as special cases of MPLR, which differ from each other in
how to model densities and how to calculate {r; » }. Note that this
unified view by MPLR not only provides insightful understanding of
the methods, but also leads to techniques to improve them, for which
we give the details later.

3.2. Connection to GMM based mapping methods [1, 2]

The GMM-based mapping (voice conversion) method was firstly in-
troduced for voice conversion by Stylianou et al. [1]. This method
makes use of GMM to model the density of source vector x as,

K
ZakN(x\,uk,Ek) (17)

k=1

pomm(x) =

where N (z|pr, Xx) denotes a Gaussian distribution with mean ju,
and covariance matrix X, and {«y } are the weights.
The authors [1] assumed that the mapping function has a form,
y' = Fown(x) = Y ponm(klz) (e + ThZ (@ — i), (18)
k

wi N (2|pg,Sk)
Y wiN(elu;,55)
GMM-based mapping function Eq. 18 reduces to MPLR mapping
function Eq. 6, when we set p(z|k) = N(x|ur, Xk), wr = o,
TR, = vp and Vi§7 = Tk, After the GMM is trained, i and X

where powm (k|z) = It is easy to see that

are known. And the unknown parameters v, and I'y, of Eq. 18 are
obtained by solving the optimal problem [1],

min Z|yz ZPGMM (k|z:) (vi + T2y (2

{vk,Tr}

— i)

19

This is essentially the same as Eq. 8, and is computationally expen-
sive, since {v} and {I'x} totally include Km + Knm variables.
As discussed in [1], the optimization of Eq. 19 includes a heavy
matrix-inverse step which requires O((Kn)?) multiplications.

In our formulation of MPLR, the transformation parameters can
be calculated directly by using Eq. 11, where the inverse only re-
quires about O(Kn*) multiplications. We call this new calculation
(Eq. 11) as MPLR modified GMM-mapping, or MPLR-GMM for
short. MPLR-GMM leads to faster computation with less memory
cost than [1]. Note the mapping function of MPLR-GMM is not
identical to that of GMM mapping [1] (Eq. 18), since MPLR-GMM
doesn’t optimize Eq. 19. We will compare them in experiments.

The GMM-based mapping [1] only performs density estimation
on the source vectors {x;}, and assumes that the target vectors {y; }
have the same clustering structure as the source one. To overcome
this limitation, Kain et al. [2] used GMM to model the density of
joint vector z; = [zF, 477,

K
=Y aiN(zlui, F), (20)

k=1

where A* = {uj, X7 }. We call this model ‘GMM-J” for short. The
mean vector uj, and 37, can be decomposed by,

. x . ZCL‘CI) Ezy
uk:{ﬁgyzk={z% E%}. @n

Then the transformation function [2, 8] is given by

PGMM-J (Z )

y' = Fomm ()
Z akN ‘M£7 Ezz) (‘uy
ZN(CU“L] Ea:z) k

Optimized for p(k|z;)

+ IS (@ - k).

Weight p(k|z)
(22)

If we set wy = of, p(z|k) = N(z|uf, X5°), Tr, = pi. Yr,, =
His Vi, = X" and V¥ = BJ°, Eq. 22 will be the same as the
mappmg function Eq. 6 of MPLR (remind Eq. 16).
There is an implicit problem of the GMM-J mapping function
Eq. 22. Recall in the EM training of GMM, parameters o, i, ji.,
%" and 27" are calculated with the posterior probability p(k|z;) of
joint vector z. However, these transformation parameters should be
calculated by using the posterior probability p(k|z;) of source vector
z. This is because, in the testing phase, only source vector x is given
and we don’t have complete information on z. In other words, in
the GMM-J mapping function Eq. 22, while the weights {p(k|x)}
are calculated from the posterior probability of source vector x, the
transformation parameters { %, py, X5 and 37" } are optimized for
the posterior probability p(k|z) of joint vector z. This fact affects its
performance. We use MPLR to overcome this problem. After GMM
training of the joint vectors, we calculate the marginal probability of
x as p(z|k) = [ p(z|k)dy, which is actually N (z|uf, SE7). In the
next, we can calculate r; , = p(k|x;) with Eq. 7 and the weight
YTk
the optimal transformation parameters Ay. We call this method the
MPLR-modified GMM mapping with joint density estimation, or
"MPLR-GMM-J’ for short.

of p(klz) as aj = Then we use Eq. 11 to estimate
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Fig. 2. Cepstrum distortion vs. the mixture number.

4. EXPERIMENTS

We experimentally compared the proposed MPLR-GMM and
MPLR-GMM-J with traditional GMM and GMM-J based mapping
methods on a voice conversion task. The ATR-503 phoneme bal-
anced corpus pronounced by a male speaker and a female speaker is
used for evaluation. The sampling frequency of utterances is 16kHz.
We converted the male voice to the female voice by using 20 dimen-
sion cepstrum features. The training data is aligned by DP matching.
The cepstrum distortion [1, 8] between the target cepstrum vector
[yt, ..., y7°] and the converted cepstrum vector [yl, ..., y2°] is de-

fined as CD[dB](yc,y:) = 10/In104/23°20 (yd —yd)2. We
calculate the average cepstrum distortion (ACD) as evaluation crite-
ria.

We conducted two experiments for evaluation. In the first ex-
periment, we randomly selected 40 sentences for training and used
another 100 sentences for testing. We gradually changed mixture
number K as 1,2,4,8,16. Note when K = 1, all the methods re-
duce to the classical linear regression. In the 2nd experiment, we
fix the mixture number as 5 and change the number of training ut-
terances M as 10,20....,100. The number of utterances for testing is
also set as 100. The results are summarized in Fig. 2 and Fig. 3. As
one can see, the proposed MPLR-GMM-J always achieves the least
ACD than among all the methods compared in various parameter se-
tups. The performance of MPLR-GMM is a bit better than that of
GMM. As discussed in Section 3.2, MPLR-GMM requires less time
and memory cost than GMM.

It can be observed from Fig. 2 that the ACD difference between
MPLR-GMM-J and GMM-] increases as the mixture number K in-
creases. This is because, the transformation parameters of GMM-J
depends on p(k|z) while the parameters of MPLR-GMM-J depends
on p(k|x) (refer to Section 3.2 for details). Generally, p(k|z) be-
comes more unlike p(k|x) as mixture number K increases. It is ex-
pected that MPLR-GMM-J may have much better performance than
GMM-J when K is large.

5. CONCLUSIONS

This paper proposes the mixture of probabilistic linear regressions
(MPLR) to learn the mapping function from a source feature space
to a target one. The mapping parameters of MPLR can be estimated
directly from matrix calculation, and the mixture nature of MPLR al-
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Fig. 3. Cepstrum distortion vs. the numbers of training utterances.

lows it to deal with the nonlinear mapping. Moreover, MPLR doesn’t
depend on a specific density model, which enables it to be suitable
for various applications. We show the two famous GMM based map-
ping methods [1, 2] can be regarded as special cases of MPLR. And
we find that the formulation of MPLR indicates methods to improve
them. Compared with [1], MPLR provides faster calculation of map-
ping parameters and a bit better performance. The formulation of
MPLR leads to a modified mapping function which can overcome an
implicit conflict problem in [2]. We compared MPLR-based meth-
ods with the two traditional GMM-based methods in voice conver-
sion. The experimental results show that our MPLR-based methods
have less cepstrum distortions.

It is noted that it is not our objective in this paper to develop a
high quality voice conversion (VC) system. In fact, one can combine
our MPLR based methods with other VC techniques such as [8, 9]
in developing practical systems. We are going to examine the pro-
posed methods in larger database with subjective evaluations in the
future. Finally, the formulation of MPLR is general and can have
applications in other fields.
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