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Abstract—This paper proposes Hidden Structure Model
(HSM) for statistical modeling of sequence data. The HSM
generalizes our previous proposal on structural representation
by introducing hidden states and probabilistic models. Com-
pared with the previous structural representation, HSM not
only can solve the problem of misalignment of events, but
also can conduct structure-based decoding, which allows us
to apply HSM to general speech recognition tasks. Different
from HMM, HSM accounts for the probability of both locally
absolute and globally contrastive features. This paper focuses
on the fundamental formulation and theories of HSM. We also
develop methods for the problems of state inference, probability
calculation and parameter estimation of HSM. Especially, we
show that the state inference of HSM can be reduced to a
quadratic programming problem. We carry out two experiments
to examine the performance of HSM on labeling sequences.
The first experiment tests HSM by using artificially transformed
sequences, and the second experiment is based on a Japanese
corpus of connected vowel utterances. The experimental results
demonstrate the effectiveness of HSM.

I. INTRODUCTION

One of the major challenging problems in speech engi-
neering is to deal with non-linguistic variations contained in
speech signals. These variations are caused by the difference
of speakers, communication channels, environment noise, etc.
To overcome this difficulty, modern speech recognition ap-
proaches mainly make use of statistical methods (such as
GMM and HMM) to model the distributions of acoustic fea-
tures. These methods always require a large amount of data for
training and can achieve relatively high recognition rates when
there is a good match between training and testing. But it is
well-known that the performance of speech recognizers drops
significantly if mismatch exists. Let us consider children’s
spoken language acquisition. A child does not need to hear
the voices of thousands of speakers before he (or she) can
understand speech. This fact largely indicates that there may
exist robust representations of speech that are nearly invariant
to non-linguistic variations. We consider it is by these robust
representations that children can acquire spoken language with
very speaker-biased training data from their parents.

In our previous work [1], the third author proposed an
invariant structural representation of speech which aims at
removing the non-linguistic factors from speech signals. Dif-
ferent from classical speech models, the structural representa-
tions make use of globally contrastive features to model the
global and dynamic aspects of speech and discard the local and

static features. It can be proved that these contrastive features
(f -divergence) are invariant to any invertible transformations
and thus are robust to non-linguistic variations [2]. It is noted
that our contrastive features are different from delta (or delta-
delta) features often used in speech engineering. The delta
features describe differential information of cepstrums and are
not invariant to transformations. We have already demonstrated
the effectiveness of this representation in ASR [3], [4], speech
synthesis [5], and CALL [6].

However, the structural representation also has its limita-
tions. A speech structure is constructed for every sequence
independently. So there may exist misalignment between
event sequences with the same linguistic contents. Moreover,
structural representations don’t have label information for
events, which makes them difficult to be used for general
speech recognition. To overcome these difficulties, this paper
proposes Hidden Structure Model (HSM) by introducing hid-
den states and probabilistic analysis previous. Compared with
the previous structural representation, HSM unifies structure
construction and structure comparison into a single framework,
and avoids the misalignment of events. Moreover, the introduc-
tion of hidden states allows HSM to conduct structure-based
decoding. This further allows us to apply HSM to general
phoneme recognition other than word recognition. HSM is
similar to HMM in a sense that both make use of hidden
states, but different from HMM in a sense that HSM contains
the probability models of both locally absolute and globally
contrastive features. This paper proposes the fundamental
formulation of HSM and develops the algorithms for state
inference, probability calculation and parameter estimation of
HSM. We carry out two experiments on artificial data and
connected Japanese vowel utterances. The experimental results
exhibit that the combination of both absolute and contrastive
features in HSM can improve the recognition rates.

II. REVIEW OF PREVIOUS STRUCTURAL REPRESENTATIONS

This section gives a brief overview on the invariant structure
theory and how to calculate structural representations from
utterances. More details can be found in our previous works
[1], [2], [4].

An invariant structure is constructed from a set of dis-
tributions. As preparation, we introduce an invariant metric
between distributions. Consider two distributions pi(x) and
pj(x) in feature space X . Assume there is an invertible
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transformation h : X → Y (linear or nonlinear) which
maps x into y. In this way, distributions pi(x) and pj(x)
are converted in to qi(y) and qj(y). Under transformation h,
p(x)dx = q(y)dy and dy = |Φ(x)|dx, where Φ(x) denotes
the determinant of the Jacobian matrix of h. Thus we have
q(y) = q(h(x)) = p(x)|Φ(x)|−1. Consider f -divergence [7]
defined as

Df (pi, pj) =
∮

pj(x)f
(

pi(x)
pj(x)

)
dx, (1)

where f : (0,∞) → R is a real convex function and
f(1) = 0. It can be proved that f -divergence is invariant
to transformation: Df (qi, qj) = Df (pi, pj) [2]. Moreover, we
found that all the invariant integration measures

∮
M(pi, pj)dx

must be in the form of f -divergence [2].
Consider feature space X and pattern P in X . Suppose P

is composed of a sequence of K events {pi}K
i=1, where each

event is described as distribution pi(x) in X . Note x can have
multiple dimensions. Under h, pattern P in X is transformed
to pattern Q in Y , and event pi(x) is converted to event qi(y).
From pattern P , we can calculate a K×K divergence matrix
DP with DP (i, j) = Df (pi, pj) and DP (i, i) = 0. Here DP

provides a structural representation of pattern P . Similarly, we
can obtain structural representation DQ for pattern Q. Due to
the invariance of f -divergence, DQ ≡ DP , and the structural
representation is invariant to transformations.

In the next, we show how to calculate a structural represen-
tation from an utterance. As shown in Fig. 1, at first, we cal-
culate a sequence of cepstrum from input speech waveforms.
Then an HMM is trained from a single cepstrum sequence and
each state of the HMM is regarded as an event. Thirdly we
calculate f -divergences between each event pair. These diver-
gences will form a distance matrix with zero diagonal, which
can be seen as the structural representation. For convenience,
we can expand its upper triangle into a structure vector if
the f -divergence used is symmetric. It is easy to see that this
structural representation must be invariant to transformations
in feature space. In speech engineering, non-linguistic speech
variations are often modeled as transformation of cepstrum
feature space. Microphone and environment distortion modi-
fies cepstrum features with an additive vector. And vocal tract
length difference is often modeled as linear transformation
of the cepstrum features [8]. With structural representation,
the speech recognition can be seen as a structure matching
problem, where the matching score of two structures DP and
DQ is given by D(P, Q) =

∑
i,j |DP (i, j)−DQ(i, j)|2.

III. HIDDEN STRUCTURE MODEL

In the previous structural representation, a distribution
(event) sequence is calculated for each utterance indepen-
dently of other utterances. There may exist misalignment
between different distribution sequences. For example, let
P = {p1, p2, ...} and Q = {q1, q2, ...} denote two distribution
sequences calculated from two utterances of the same word
‘aiueo’. Assume that p3 of P comes from ‘i’, but q3 of
Q may come from ‘u’. Another limitation of the structural
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Fig. 1. Framework of structure construction.
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Fig. 2. Preprocessing of cepstrum sequence.

representation is that it doesn’t include any label or category
information of each event. Although the word recognition
problem can be reduced to structure matching, it is difficult
to extend this technique for other general speech recognition
tasks, such as phoneme recognition. Moreover, in practice,
contrastive features (f -divergences) are not strictly invariant
due to noise and speaking styles. We need to consider a
probabilistic model for contrastive features.

We notice that HMM doesn’t have the above limitations.
HMM avoids the misalignment problem by using DP-matching
to align a cepstrum sequence with a sequence of HMM
distributions. Moreover, HMM includes hidden states and has
a flexible algorithm (Viterbi decoding) to estimate the most
probable hidden state sequence for an observed sequence. This
makes HMM suitable for solving general recognition tasks.
Recall that the main advantage of the structural representation
is that it makes use of contrastive features, which are robust
to speaker difference. Inspired by these facts, we develop
Hidden Structure Model for sequence data, which aims at
combining contrastive features with a flexible and probabilistic
model. Like HMM, HSM introduces the hidden states of
observations and takes account for the labels of these hidden
states. Unlike HMM, HSM models the distributions of both
absolute and contrastive features that make it more robust to
speaker differences.

A. Preprocessing of speech sequences for HSM

The contrastive features have to be calculated from events
(sub-sequences or segments). For this reason, we need to
divide a sequence X = x1, x2, ..., xM into a set of segments
O = o1, o2, ..., oT with a preprocessing step (Fig. 2). Gener-
ally, we can use agglomerative clustering algorithm (ACA) [9]
or HMM-based decomposition for sequence division [3], [4].
If we use ACA, each segment is a subsequence, denoted by,
ot = xmt

, xmt+1, ..., xet
. If we use the second method, each

segment is modeled as a Gaussian distribution N(ōt, Vt). For
each segment pair ot1 and ot2 , we use ct1,t2 to denote the

119



contrastive feature between them.

B. Introduction of Hidden Structure Model

Generally speaking, HSM is a probabilistic model for se-
quence data, which takes account for joint distribution of both
absolute and contrastive features. To begin with, we formally
define the elements of HSM as the following.

1) N , the number of hidden states in HSM. We denote the
set of individual states as S = {sn}N

n=1. We use qt (qt ∈ S)
to represent the hidden state of ot in sequence O. Then the
state sequence is denoted by Q = q1, q2, ..., qT .

2) State transition probability distribution B = {bi,j}, where
bi,j = p(qt+1 = sj |qt = si) (1 ≤ i, j ≤ N ) and

∑
j bi,j = 1.

3) Initial state distribution π = {πi}, where πi = p(q1 = si)
(1 ≤ i ≤ N ) and

∑
i πi = 1.

4) Absolute observation probability (AOP) distribution in
state j, p(ot|qt = sj). If the segment is a subsequence, we
can calculate its mean as ōt = 1

et−mt+1

∑et

i=mt
xi. We assume

that AOP has a Gaussian form,

p(ōt|qt = sj) = N(ōt|µa
j ,Σa

j ). (2)

Let A = {µa
j ,Σa

j } denote the set of AOP parameters, and OA

the set of absolute features of sequence O.
5) Contrastive observation probability (COP) distribution

for state i and state j, p(ct1,t2 |qt1 = si, qt2 = sj), where
ct1,t2 represents the contrastive features (BD, KL-div. [4], [2])
between ot1 and ot2 . COP is assumed to have a Gaussian form,

p(ct1,t2 |qt1 = si, qt2 = sj) = N(ct1,t2 |µc
i,j ,Σ

c
i,j). (3)

Let C = {µc
i,j ,Σ

c
i,j} denote the set of COP parameters, and

OC the set of contrastive features of sequence O.
One can see that items 1)-4) are the same as those of

classical HMM, but item 5) is new, which describes the
distribution of contrastive features. For convenience, we use a
compact notation λ = (A,B, C, π) to represent the complete
model parameters.

Consider model λ, speech sequence O = o1, o2, ..., oT and
its state sequence Q = q1, q2, ..., qT . HSM calculates the joint
probability of absolute features OA and relative features OC

given model λ and state sequence Q as,

p(O|Q,λ) = p(OA, OC |Q,λ) =

1
N (Q,λ)

T∏
t=1

p(ōt|qt)

︸ ︷︷ ︸
Absolute part

∏

1≤t1,t2≤T

p(ct1,t2 |qt1 , qt2)

︸ ︷︷ ︸
Contrastive part

. (4)

In general cases, normalization factor N (Q,λ) is required in
Eq. 4 to ensure

∫
O

p(O|Q,λ) = 1. For simplicity, in this
paper, we assume the independence of OA and OC , and the
normalization factor reduces to 1. An example of HSM is
depicted in Fig. 3. Note if we remove the contrastive part of
Eq. 4, this probability calculation will be the same as that of
HMM. On the other hand, if we remove the absolute part, Eq.
4 reduces to a probabilistic model of structural representation.

Observed  

signals 

Hidden 

states
q1 q2 q3 qT-1

o1 o2 o3 oT-1…

…

oT

qT

c1,2 c2,3 cT-1,T

c2,T

Fig. 3. An example of HSM. (HMM contains only the thick lines.)

We introduce the following variables Z = {zi,t}, where

zi,t =
{

1 if qt = si

0 otherwise.

It is easy to see that Z has the same information as Q. With
zi,t, we can rewrite Eq. 4 into

p(O|Q,λ) = p(O|Z, λ)

=
T∏

t=1

N∏

i=1

p(ōt|si)zi,t

∏

1≤t1,t2≤T

N∏

i=1

N∏

j=1

p(ct1,t2 |si, sj)zi,t1zj,t2 .

(5)

Like in HMM, the probability of state sequence is given by

p(Q|λ) = p(Z|λ) = p(q1)
T∏

t=2

p(qt|qt−1)

=
N∏

i=1

p(si)zi,1

T∏
t=2

N∏

i=1

N∏

j=1

p(si|sj)zi,tzj,t−1 . (6)

Therefore, we have

p(O, Q|λ) = p(O, Z|λ) = p(O|Z, λ)p(Z|λ)

=
N∏

i=1

p(si)zi,1

T∏
t=1

N∏

i=1

p(ōt|si)zi,t

T∏
t=2

N∏

i=1

N∏

j=1

p(si|sj)zi,tzj,t−1

∏

1≤t1,t2≤T

N∏

i=1

N∏

j=1

p(ct1,t2 |si, sj)zi,t1zj,t2 . (7)

Calculate the log of the above equation,

log p(O, Z|λ) =
N∑

i=1

zi,1 log πi +
T∑

t=2

N∑

i=1

N∑

j=1

zi,tzj,t−1 log bi,j

+
T∑

t=1

N∑

i=1

ζi,tzi,t +
∑

1≤t1,t2≤T

N∑

i=1

N∑

j=1

ηi,j,t1,t2zi,t1zj,t2 . (8)

where ζi,t = log p(ōt|si) and ηi,j,t1,t2 = log p(ct1,t2 |si, sj).
In the next, we introduce methods to solve the three prob-

lems of HSM, namely, state inference, probability calculation
and parameter estimation.

C. State inference
Given model λ and observed stream O, the objective of

state inference is to determine Z maximizing the following
conditional probability,

arg max
Z

p(Z|O, λ). (9)
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Using Bayesian theory, we have

p(Z|O, λ) =
p(O, Z|λ)
p(O|λ)

∝ p(O, Z|λ). (10)

Thus the problem can be reduced to find Z which maxi-
mizes Eq. 8, maxZ log p(O, Z|λ). In HMM, the state inference
problem is solved by Viterbi algorithm in the spirit of dynamic
programming. However, it is difficult to apply this technique
to HSM. In Viterbi algorithm, finding the most likely hidden
sequence up to time t must depend only on the observed
event at t, and the most likely sequences before t. This rule
is satisfied in HMM due to its Markov property. But in HSM,
we account for the contrastive features between each two
observations, and the above rule never holds in HSM.

For this reason, we propose a new technique other than
dynamic programming for state inference of HSM. We found
that Eq. 8 can be reduced to a quadratic programming prob-
lem. Expand Z = {zi,t} into an NT -dimensional vector
z = [z1, z2, ..., zT ], where zt = [z1,t, z2,t, ..., zN,t]. Introduce
a matrix D = {di,t}, where

di,t =
{

ζi,t + log πi if t = 1,
ζi,t otherwise.

Similarly, we can expand D into a NT -dimensional vector d.
Now, let us consider a tensor G = {gi,j,t1,t2} where

gi,j,t1,t2 =
{

ηi,j,t1,t2 + log bi,j if t2 = t1 + 1,
ηi,j,t1,t2 otherwise.

Let Et1,t2 = {g:,:,t1,t2} denote a slice of G when t1, t2 are
fixed. We can unfold G into an NT ×NT matrix E where,

E =




E1,1 E1,2 · · · E1,T

E2,1 E2,2 ... E2,T

...
...

. . .
...

ET,1 ET,2 · · · ET,T




Then the maximization of Eq. 8 can be written as the following
0-1 (binary) quadratic programming (QP) problem

max
z

f(z) = zdT + zEzT, (11)

subject to: zi,t ∈ {0, 1},
∑

i

zi,t = 1.

However, the above 0-1 quadratic programming is still very
hard. To circumvent this difficulty, we relax the 0-1 constraint
of z, and obtain the following QP problem,

max
z

f(z) = zdT + zEzT, (12)

subject to: 1 ≥ zi,t ≥ 0,
∑

i

zi,t = 1.

With the above constraints, Eq. 12 becomes a quadratic
programming problem. If matrix E is negative-definite, this
problem can be solved in a polynomial time. We have the
following theorem, which discusses the relation between Eq.
11 and Eq. 12, and its proof is given in Appendix.

Theorem 1: The optimal solution of quadratic programming
problem of Eq. 12 will be the same as one optimal solution
for 0-1 quadratic programming problem of Eq. 11.

D. Probability calculation

Here we study the problem of how to calculate probability
p(O|λ) of the observed sequence O given model λ, posterior
probability p(qt = si|O, λ) of t-th observation being state si,
and posterior probability p(qt1 = si, qt2 = sj |O, λ) of joint
states. Generally, these probabilities can be calculated as,

p(O|λ) =
∑

Z

p(O, Z|λ), (13)

p(qt = si|O, λ) =
∑

Z(zi,t=1)

p(Z|O, λ), (14)

p(qt1 = si, qt2 = sj |O, λ) =
∑

Z(zi,t1zj,t2=1)

p(Z|O, λ). (15)

To directly calculate the summations of the above equations
is very time-costly, since there exist NT possible Q (Z). In
HMM, these problems are solved by forward and backward
algorithms. But HSM makes use of contrastive features, which
prevent the usage of these fast DP-based algorithms.

In this paper, we consider an approximation method. Let
Z∗ = arg max

Z
p(O, Z|λ) denote the optimal solution of Eq.

8. Then we can approximate Eq. 13 as

p(O|λ) ≈ max
Z

p(O, Z|λ) = p(O, Z∗|λ). (16)

Introduce variables ri,t and ξi,j,t1,t2 to represent the expec-
tations of zi,t and zi,t1zj,t2 respectively,

ri,t = E[zi,t] =
∑

Z

p(Z|O, λ)zi,t = p(zi,t = 1|O, λ),

(17)

ξi,j,t1,t2 = E[zi,t1zj,t2 ] =
∑

Z

p(Z|O, λ)zi,t1zj,t2

= p(zi,t1zj,t2 = 1|O, λ). (18)

We consider the following ‘a winner takes all’ approximations
of the above variables,

ri,t ≈ z∗i,t, (19)

ξi,j,t1,t2 ≈ z∗i,t1z
∗
j,t2 . (20)

E. Parameter estimation

In this section, we discuss the problem to estimate the
parameters of HSM. Using maximum likelihood estimation,
we have

arg max
λ

∏

k

p(Ok|λ), (21)

where Ok denotes the k-th training sequence. There doesn’t
exist a closed form solution for MLE of HSM. So we
adopt EM algorithm [10] for optimization. Note {ri,t} and
{ξi,j,t1,t2} are used as the hidden parameters in EM iteration.

In the E-step, given the old parameters λold, we need
to calculate the distribution of Z denoted by p(Z|O, λold).
Since zi,t is binary, this problem is reduced to estimate the
expectations ri,t and ξi,j,t1,t2 . There are two methods to do
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this. One is to estimate the marginal probabilities through
summation as in Eq. 14 and Eq. 15. But this is computationally
expensive. The other is to use the approximations given by Eq.
19 and Eq. 20. It is noted that these approximations are similar
to the Viterbi training [11] of HMM (also known as segmental
k-means), where the hidden parameters are determined through
Viterbi alignment not by calculating marginal probabilities.

When the hidden parameters rk
i,t and ξk

i,t1,j,t2
are given,

we can find the model parameters through maximizing the
auxiliary function Q(λ, λold),

Q(λ, λold) =
∑

k

∑

Z

p(Z|Ok, λold) log p(Z, Ok|λ) (22)

=
∑

k

{
N∑

i=1

rk
i,1 log πi +

T∑
t=2

N∑

i=1

N∑

j=1

log bi,jξ
k
i,j,t,t−1

+
T∑

t=1

N∑

i=1

ζk
i,tr

k
i,t +

∑

1≤t1,t2≤T

N∑

i=1

N∑

j=1

ηk
i,j,t1,t2ξ

k
i,j,t1,t2}.

(23)

Then the optimal parameters can be calculated by,

πi =

∑
k rk

i,1∑
k

∑N
j=1 rk

j,1

, (24)

bi,j =

∑
k

∑T
t=2 ξk

i,j,t−1,t∑
k

∑N
m=1

∑T
t=2 ξk

m,j,t−1,t

, (25)

µa
i =

∑
k

∑T
t=1 ōk

t rk
i,t∑

k

∑T
t=1 rk

i,t

, (26)

Σa
i =

∑
k

∑T
t=1 rk

i,t(ō
k
t − µa

i )(ōk
t − µa

i )T

∑
k

∑T
t=1 rk

i,t

, (27)

µc
i,j =

∑
k

∑
t1,t2

ck
t1,t2ξ

k
i,j,t1,t2∑

k

∑
t1,t2

ξk
i,j,t1,t2

, (28)

Σc
i =

∑
k

∑
t1,t2

(ck
t1,t2 − µc

i,j)(c
k
t1,t2 − µc

i,j)
Tξk

i,j,t1,t2∑
k

∑
t1,t2

ξk
i,j,t1,t2

.

(29)

IV. EXPERIMENTS

We carry out two preliminary experiments to examine HSM
on labeling sequences. It is noted that the previous structural
representation cannot conduct such tasks.

A. Experiment 1 with generated and transformed sequences

The first experiment examines the performance of HSM
with artificially generated and transformed sequences. As
preparation, we calculate the Gaussian distributions of cep-
strum features for six symbols, i.e., five Japanese vowels
(‘a’,‘e’,‘i’,‘o’,‘u’) and silence (‘sl’). Using the six symbols,
we randomly generate a set of strings, each of which contains
16 symbols. Then the corresponding cepstrum features of
these strings are obtained by using the Gaussian models to
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Fig. 4. Average symbol-based recognition rates for randomly generated and
transformed sequences.

generate five frame vectors for each symbol. After that, we
perform acoustic transformation on the generated cepstrum
features as if the features are generated by different speakers.
The acoustic transformation is realized by frequency warping,
which corresponds to multiplication of cepstrum vectors by
a specific type of matrix [8]. The elements of the matrix are
functions of warping parameter α [8] and, by changing the
value of α, we can lengthen/shorten the vocal tract length of
speech samples. Here, the value of α in [-0.5,0.5] is randomly
selected from a uniform distribution. In this way, we generate
a set of strings which are acoustically realized by different
speakers. Using this procedure, a set of transformed cepstrum
sequences are prepared for training and another set for testing.
It should be noted that these sequences are different strings and
are acoustically realized by different speakers.

We train a single six-state HSM from the sequences in
the training set. It is noted that since label (symbol) and
boundary information of every sequence is known, we can
use Eq. 26, Eq. 27, Eq. 28, and Eq. 29 to directly estimate the
distribution parameters of the absolute and contractive features
without EM iterations. Once the HSM is trained, we use the
QP-based state inference method proposed in Section III-C
to estimate the symbol (state) information of every testing
cepstrum sequence. In other words, each input sequence is
aligned to the HSM. The testing set contains 20 sequences. We
change the number of training sequences from 10 to 40. For
each case, we repeat the experiments 20 times. The average
symbol-based recognition rates are shown in Fig. 4, where
‘Ab’ represents the use of absolute features only, and ‘Ab+Cn’
the use of both absolute and contrastive features. ‘Original’
means using the original Gaussian distributions for training. As
discussed in the beginning of Section III, the absolute feature
only is essentially the same as HMM. As one can see, the
combination of both absolute and contrastive features has the
best performance.

B. Experiment 2 with Japanese vowel utterances

In the second experiment, we examine the recognition per-
formances with a database of continuously connected Japanese
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Fig. 5. State recognition rates for connected Japanese vowel utterances.

vowel utterances. It is known that acoustic features of vowel
sounds exhibit larger between-speaker variations than conso-
nant sounds. Each word in the data set is a concatenation
of the five Japanese vowels ‘a’,‘e’,‘i’,‘o’ and ‘u’, such as
‘aeiou’,‘uoaie’, etc. So there are totally 120 words. The
utterances of 16 speakers (8 males and 8 females) were
recorded. Every speaker provides 5 utterances for each word.
The total number of utterances is 16×120×5 =9,600. For
each utterance, we calculate twelve Mel-cepstrum features and
one power coefficient. Then ML-based decomposition is used
to convert cepstrum vectors into a sequence of 25 Gaussian
distributions (sub-segments) [4], [3]. We label each distribution
as ‘a’,‘e’,‘i’,‘o’, ‘u’ or ‘sl’ by forced alignment with speaker-
dependent phoneme HMMs.

We train independently a 6-state HSM with 600 (120×5)
utterances of a male speaker and another HSM for a female
speaker. For each HSM, we examine its state recognition rates
for utterances of other male speakers, other female speakers,
and both. The results are summarized in Fig. 5. Like the
results of experiment 1, we found that ‘Ab+Cn’ achieves the
best recognition rates. Moreover, the contrastive features have
better performance than the absolute features.

V. CONCLUSIONS

This paper proposes Hidden Structure Model (HSM) for
sequence data. HSM generalizes our previous structural rep-
resentation into a probabilistic framework, which accounts
for both absolute and contrastive features. Like HMM, HSM
makes use of hidden states. Different from HMM, HSM con-
tains the distributions of contrastive features. We also develop
algorithms for state inference, probability calculation, and
parameter estimation of HSM. Due to the usage of contrastive
features, we cannot use dynamic programming to develop
HMM-like algorithms, such as Viterbi algorithm, forward and
backward algorithm, and Baum-Welch algorithm. In this paper,
we formulate the state inference into a quadratic programming
problem, and develop approximation methods for probability

calculation and parameter estimation. We conducted two pre-
liminary experiments to examine the performance of HSMs.
One is based on artificially generated sequences, the other
makes use of the connected Japanese vowel utterances. The
results show the usefulness of HSM and the advantages of
combining absolute and contrastive features. The results of this
paper are preliminarily and limited. In the future, we are going
to improve the model and algorithms of HSM, and examine
HSM with larger database.

APPENDIX

Proof: Let z′ denote the optimal solution for Eq. 11 and
z∗ denote the optimal solution for Eq. 12. Since the constraints
of Eq. 12 are more general than Eq. 11, we have,

f(z∗) ≥ f(z′). (30)

Now consider a distribution p∗(z) of discrete variables z
with p∗(zi,t = 1) = z∗i,t. Calculate the expectation of f(z)
under p∗(z) as,

Ep∗(z)[f(z)] = Ep∗(z)[zdT + zEzT] = f(z∗). (31)

On the other hand,

Ep∗(z)[f(z)] =
∑
z

p∗(z)f(z) = f(z∗). (32)

Since 0 ≤ p∗(z) ≤ 1 for all z, there must exist one z′′ such
that f(z′′) ≥ f(z∗). Thus f(z′) ≥ f(z′′) ≥ f(z∗). Recall Eq.
30, f(z′) = f(z∗) must hold. Therefore, the optimal solutions
for Eq. 11 and Eq. 12 must be the same.
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