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Abstract
Speech features are inevitably changed by static biases of extra-
linguisitc factors, such as age, gender, microphone, etc. In the
conventional ASR, these changes were often handled by build-
ing speaker-/environment-independent acoustic models trained
with thousands of utterances produced in different conditions.
Here, absolute properties of speech (speech substances) such
as spectral envelopes were extracted and modeled statistically.
Recently, contrast-based speech modeling has been proposed
[1], where only speaker-invariant speech contrasts or dynamics
(relative properties) are extracted and modeled. In this paper,
firstly, these two models (substance or contrast) are compared
through a discussion on how animals had acquired the ability of
robust processing of stimuli and how animals still differ from
humans. After experimental results of our proposed framework
of ASR are shown, it is also discussed that the strategy of speech
processing based on the conventional model is similar to that of
severely damaged autistics. They have a good and exact mem-
ory of stimuli but are weak in handling changes of stimuli.
Index Terms: extra-linguistic features, speech contrasts, invari-
ance, speech structures, automatic speech recognition, autistics

1. Nature of perceptual constancy
All the living systems receive stimuli from the external envi-
ronment and generate some responses to it. Through this recep-
tion and generation loop, interaction emerges, where the same
stimulus often changes in its shape and form. For example, a
visual image is modified in its shape by viewpoint changes but
our perception is constant and invariant. As for color, a flower
in broad daylight and the same one at sunset give us different
color patterns but we perceive the equivalence between them.
Humming by a male and that of the same melody by a female
often differ in fundamental frequency but we easily perceive
the equivalence. This is the case with speech. Male voices are
deeper in timbre than female ones but the invariant perception is
easy between a father’s “hello!” and a mother’s. Although the
above stimuli are given to receivers using different media, all
the changes are caused commonly by inevitable static biases.

It seems that researchers of psychology found that a simi-
lar mechanism is working to cancel the static biases and realize
the invariant perception [2, 3, 4]. Figure 1 shows the look of the
same Rubik’s cube seen through differently colored glasses. Al-
though the corresponding tiles of the two cubes have different
colors absolutely, we name them using the same labels. On the
other hand, although we see four blue tiles on the top of the left
cube and seven yellow tiles on the right, when their surround-
ing tiles are hidden, we see that they have the same color (See
Figure 2). Absolutely different colors are perceived as identical
and absolutely identical colors are perceived as different.

Similar phenomena are easily found in tone perception. Figure 3
shows two sequences of musical notes. The upper corresponds
to humming by a female and the other to that of the same melody

Figure 1: The same Rubik’s cube seen with two colored glasses

Figure 2: Perception of colors without context
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Figure 4: Tonal arrangement (scale) of the major key

by a male. If hearers have relative pitch and can transcribe these
melodies, they convert the two melodies into the same sequence
of syllable names (So Mi So Do La Do Do So). The first tone of
the upper melody and that of the lower are different absolutely
but they name these tones using the same label. The first tone of
the upper and the fourth of the lower are identical absolutely but
they claim that the two tones are different. Similar to the color
perception, absolutely different tones are perceived as identical
and absolutely identical tones are perceived as different.

Researchers found that the invariant perception, colors and
tones, occurs mainly based on contrast-based information pro-
cessing [2, 3, 4]. In other words, our invariant perception of
colors and tones is guaranteed by the invariant relation of the fo-
cused stimulus to its surrounding stimuli. For individuals with
relative pitch, a single tone is difficult to name but tones in a
melody are easy to transcribe. If two tones in a melody of the
major key, which can be temporally distant, are three whole-
tones apart in pitch, they must be Fa and Ti according to the
tonal arrangement (scale) of the major key (See Figure 4). This
arrangement is invariant with key and, using this arrangement
as constraint, the key-invariant tone identification can occur.

As was found in ecology, the invariant color perception oc-
curs even to butterflies and bees [5]. This color perception is
extremely old evolutionarily. On the other hand, researchers of



Figure 5: /aiueo/s produced by a tall speaker and a short one

anthropology found that the invariant tone perception is diffi-
cult even for monkeys [6]. What they claim is not that monkeys
cannot transcribe a melody but that monkeys cannot perceive
the equivalence between a melody and its transposed version
[6]. The relative pitch perception is very new evolutionarily.

2. Human development of spoken language
How can infants acquire the ability of robust speech processing?
Recently, in the field of AI, there is a research trend to focus
on infants’ acquisition and development of cognitive abilities
[7, 8]. One obvious fact is that a major part of the utterances an
infant hears are from its parents. After it begins to talk, about
a half of the utterances it hears are its own speech. It can be
said that the utterances an individual hears are strongly speaker-
biased unless he/she has speaking disabilities. The variability
problem of speech acoustics should be solved not by collecting
samples if one wants to realize a human-like speech processor.

Infants acquire spoken language through imitating their par-
ents’ utterances actively, called vocal imitation. But they don’t
impersonate their parents. A question is raised; what acoustic
aspect of the voices do infants imitate? One may claim that
infants decompose an utterance into a phoneme sequence and
each phoneme is realized acoustically by their mouths. But re-
searchers of infant studies deny this claim because infants don’t
have good phonemic awareness [9, 10]. Then, what is imitated?

An answer from infant studies is the holistic sound pat-
tern embedded in an utterance [9, 10], called otherwise as word
Gestalt [11] and related spectral patterns [12]. The holistic pat-
tern has to be speaker-invariant because, whoever speaks a spe-
cific word to an infant, its responses of imitation are similar
acoustically. Another question is raised; what is the physical
definition of the speaker-invariant holistic speech pattern?

The vocal imitation is rare in animals [13] and non-human
primates scarcely imitate others’ utterances [14]. This perfor-
mance can be found in only a few species of animals, i.e. birds,
whales, and dolphins. But there is a critical difference between
humans and animals. Animals’ imitation is basically the imi-
tation of sounds like impersonation [13]. Take myna birds for
example. They imitate the sounds of cars, dogs as well as hu-
man voices. Hearing a very good myna bird say something, one
can guess its human owner [15] but cannot guess the parents
of an infant by hearing its voices. Considering that the same
pitch contours (intonation patterns) of different keys (genders or
speakers) are equivalent for humans but different for monkeys
and that the same linguistic contents acoustically generated by
different speakers are equivalent for humans but probably dif-
ferent for animals [16], the ability of extracting an invariant pat-
tern from a variable sound stream might be unique to humans.

3. Natural solution of speaker variability
As for speech, changes in vocal tract shape and length cause
timbre changes. Basically speaking, dynamic and morphologi-
cal changes of the vocal tract generate different phonemes acous-
tically. Static differences of the vocal tract length among speak-
ers generate speaker variability acoustically. Figure 5 shows the
same linguistic content generated by a tall speaker and a short
one. What is the speaker-invariant holistic speech pattern?

Speaker difference is often modeled mathematically as space

Figure 6: The invariant system of French vowels

mapping in studies of voice conversion. This means that if we
can find some transform-invariant features, they can be used as
speaker-invariant features. Recently, some proposals have been
done [17, 18, 19] but speaker variability was always modeled
simply as f̂=αf (f=frequency, α=constant). Many studies of
speaker conversion adopted more sophisticated transforms, in-
dicating that f̂=αf cannot characterize speaker variability well
enough. Further, it should be noted that all of these proposals
tried to find invariant features in individual speech sounds, not
in a holistic pattern only composed of speech contrasts.

As shown in [5], the perceptual constancy of colors is found
in butterflies. But no researcher claims that a butterfly has statis-
tical models of individual colors which are acquired by looking
at the colors through thousands of differently colored glasses.
Further, naming individual colors (elements) is not needed to
perceive the equivalence between a flower in broad daylight and
the same one at sunset. In contrast in ASR, acoustic and statis-
tical modeling of individual phonemes (elements) using thou-
sands of speakers (differently shaped tubes) is the most popular
approach. From an ecological and evolutionary viewpoint, this
strategy is remarkably weird and the invariant speech percep-
tion should be implemented on machines based on processing
holistic patterns composed of invariant contrasts or relations.

A similar claim can be found in classical linguistics [20].
Jakobson proposed a theory of acoustic and relational invari-
ance, called distinctive feature theory. He repeatedly empha-
sizes the importance of relational and systemic invariance among
speech sounds by referring to phrases of other scholars such as
Klein (topologist), Baudouin, and Sapir (linguists). Figure 6
shows his invariant system of French vowels and semi-vowels.
Figure 4 is the key-invariant tonal arrangement in melody and
Figure 6 is the speaker-invariant timbre arrangement in vowel
sounds. Considering that pitch is one-dimensional but timbre is
multi-dimensional, what has to be implemented on machines is
a mechanism of relative timbre perception, where invariant and
multi-dimensional timbre contrasts are used to determine the
value of individual sounds. In a classical study of phonetics, the
importance of relational invariance was verified in word identi-
fication tests [21]. It is interesting that Lagefoged discussed a
good similarity between perception of vowels and that of colors.

Recently, a big European project has started to develop com-
putational mechanisms needed to create artificial agents that
can acquire verbal communication skills [7]. In this project,
memory-prediction theory is adopted as its core framework. This
theory was proposed by Hawkins, who made a strong claim as
neuroscientist in his book [22], “I believe a similar abstraction
of form is occurring throughout the cortex. Memories are stored
in a form that captures the essence of relationships, not the de-
tails of the moment. The cortex takes the detailed, highly spe-
cific input and converts it to an invariant form. Memory storage
and recall occur at the level of invariant forms.”



4. Mathematical solution of the variability
4.1. Mathematically guaranteed topological invariance

Are there any invariant and contrastive features (measures) with
respect to any linear or non-linear invertible transforms? In
[23], we proved that f -divergence between two distributions is
invariant with any kind of invertible and differentiable trans-
forms (sufficiency). We also proved that any completely invari-
ant measure with respect to two distributions has to be written
in the form of f -divergence (necessity), which is formulated as

fdiv(p1, p2) =

I

p2(x)g

„

p1(x)

p2(x)

«

dx. (1)

Figure 7 shows two spaces (shapes) which are deformed into
each other through an invertible and differentiable transform.
An event is described not as point but as distribution. Two
events of p1 and p2 in A are transformed into P1 and P2 in
B. The invariance of f -divegence is always satisfied [23].

fdiv(p1, p2) ≡ fdiv(P1, P2) (2)

In a series of our previous studies [1, 23, 25, 26], we have
been using Bhattacharyya distance (BD) as one of the f -divergence
measures. Figure 8 shows a procedure of representing an input
utterance only by BD. The utterance in a feature space is a se-
quence of feature vectors and it is converted into a sequence of
distributions through automatic segmentation. Here, any speech
event is modeled as a distribution. Then, the BDs are calculated
from any pair of distributions to form a BD-based invariant dis-
tance matrix. As a distance matrix can fix a unique geometrical
shape, we call the matrix as speech structure. Individual speech
sounds can change but their entire system cannot change at all.

4.2. Some experimental results of isolated word recognition

Figure 9 shows the basic framework of isolated word recogni-
tion based on speech structures. To convert an utterance into a
distribution sequence, the MAP(Maximum A Posteriori)-based
HMM training is adopted. Then, the BD between any pair of
the distributions is obtained. After calculating the structure, a
structure vector is formed by using all the elements in the upper
triangle. This vector is a holistic and speaker-invariant repre-
sentation of a word utterance. The right-hand side of the figure
shows an inventory of word-based statistical structure models
for the entire vocabulary. The candidate word showing the max-
imum likelihood score is a result of recognition.

The speech structure is invariant with any kind of invertible
transforms. This indicates that two different words can be eval-
uated as the same. To solve this problem, we introduced good
constraints called Multiple Stream Structuralization (MSS) [25]
so that we could obtain the invariance only with speaker vari-
ability. Due to the limit of space, MSS is not explained in details
in this paper but interested readers should refer to [25, 26].

In [25, 26], structure-based isolated word recognition was
compared to substance-based word recognition. The former
used the proposed structure (contrast) models and the latter used
the conventional word HMMs trained with spectrum-based (substance-
based) features. Two word sets were used. In a set, a word was
artificially composed of five vowels such as /eauoi/ and /uoaie/.
As Japanese has only five vowels, PP=120. The other set was a
Japanese phoneme-balanced word set and PP=220 [27]. To in-
vestigate the robustness with respect to mismatch between train-
ing and testing conditions, frequency warping was applied to
testing samples to simulate speech samples generated by very
tall and very short speakers. Table 1 summarizes the results.
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Figure 7: Topological deformation of manifolds (shapes)
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Figure 8: An utterance structure composed only of f -divergence
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Figure 9: Framework of structure-based word recognition

Table 1: Comparison between HMMs and structures
(a) Results for five-vowel words

α -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00
HMMs 0.92 0.94 1.75 6.83 21.8 40.5 60.2 80.0 83.9
matched 58.9 62.1 64.3 68.5 74.3 78.3 81.5 83.5 83.9

Structures 53.6 61.9 68.3 74.3 80.1 84.0 86.9 88.8 89.1
α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

HMMs 78.2 63.1 44.5 24.8 8.85 1.88 1.00 0.67
matched 84.7 85.8 86.3 86.3 86.3 86.4 87.2 86.6

Structures 89.5 89.8 90.5 90.6 90.9 91.0 91.2 91.3

(b) Results for phoneme-balanced words
α -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

HMMs 5.33 11.2 21.5 37.4 57.6 74.1 87.6 95.8 98.3
matched 94.9 96.4 96.6 97.4 97.8 98.0 97.9 98.3 98.3

Structures 46.7 55.3 63.1 69.9 77.4 83.2 88.0 91.6 92.6
α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

HMMs 97.5 92.3 81.2 64.6 45.6 27.2 14.0 7.65
matched 98.4 98.5 98.4 98.5 98.5 98.3 98.4 98.6

Structures 92.1 90.6 86.3 81.0 74.0 66.9 58.0 49.3

α is a warping parameter and varied from −0.4 to 0.4 at
17 steps. α=−0.4/+0.4 means doubling/halving the vocal tract
length. Both HMMs and structures used no adaptation tech-
nique. The number of distributions per word is 25 for the vowel
words and 30 for the balanced words. Matched shows the re-
sults of using 17 sets of matched conditioned HMMs. In the
vowel word set, a single set of structures show almost the same
or higher performance compared to the 17 matched HMM sets.
In the phoneme balanced set, however, the performance of the
structures is lower than that of HMMs at α=0.0 although the ro-
bustness of the structures is shown at |α|>0.15. This is consid-
ered to be because unvoiced consonant sounds are less speaker-
dependent and absolute features are needed for these sounds.
Currently, we’re integrating both the models for compensation
[24]. Detailed description of the experiments is in [25, 26].



5. Discussions and conclusions
In this paper, the theoretical and underling reasons why we pro-
posed a new representation of speech [1] are described in de-
tails. In a word, the conventional strategy of speech modeling
is extremely unnatural considering animal evolution and human
development of spoken language. To conclude this paper, a rad-
ical discussion is done on what A of ASR should stand for.

We can find individuals with a certain cognitive disorder,
among whom, the following behaviors are observed. Only by
looking at Figure 1, they can find that the four blue tiles on the
left and the seven yellow tiles on the right have the same color
[28]. A melody and its transposed version are just different se-
quences of tones [29]. Utterances of their own mothers are easy
to transcribe but those of others are difficult [30]. But utter-
ances of the mothers turn difficult on a telephone [30]. Their
vocal imitation is basically impersonation like myna birds [31].
They are autistics and usually have an extremely good memory
for the detailed, highly specific aspects of stimuli [16]. Percep-
tion of autistics is so different from that of normally developed
individuals that not a few autistics describe themselves as aliens
born on this planet [16, 30, 32] to explain how their perception
is different. It is well-known that spoken language is very dif-
ficult for severely damaged autistics to use. Printed language,
not spoken language, often becomes the first language.

Autistic professor of animal science, Temple Grandin, ex-
plains that the strategy of information processing of autistics is
similar to that of animals [16]. It is local, concrete, and spe-
cific. For her, the strategy of normally developed individuals is
holistic, abstract, and general. In a medical study [33], monkeys
were used as models of severely damaged autistics.

As discussed in Section 2, although normal infants initially
capture the detailed and concrete aspects of stimuli [20], they
soon ignore some aspects and, for example, become able to find
an invariant sound pattern in acoustically different but linguis-
tically identical utterances. Considering the findings of evolu-
tionary anthropology [6, 14], it can be reasonably hypothesized
that only humans have a good abstraction ability to cancel static
biases of pitch and timbre from auditory stimuli. It should be
reminded that this abstraction should be based on holistic pat-
tern processing if we consider how animals had acquired the
ability of robust processing of visual stimuli. As claimed by re-
searchers of infant studies, young children communicate orally
to others with reduced phonemic awareness [9]. Similar per-
formances are found in phonological dyslexics [10]. Both have
difficulty in manipulating phonemes in utterances and then, in
manipulating written language. But they have no trouble in oral
communication. The structure-based speech recognizer cannot
handle phonemes but their oral performance is good and robust.

For several decades, speech engineering has proposed meth-
ods of acoustically detailed modeling of utterances for speech
synthesis and has refined methods of acoustic modeling of the
individual phonemes (elements) for speech recognition. Con-
sidering human development of spoken language, I have to claim
again that this strategy is extremely weird if speech engineers
try to build human-like speech processors. If the goal of speech
engineering is just providing text-to-speech and speech-to-text
media converters for users, however, the internal mechanism of
the converters does not have to fit to the human mechanism.

What should A of ASR stand for, then? A definitely clear
and critical difference between normally developed individuals
and the current speech recognizers forces me to claim that A of
the current ASR has to stand for, not Automatic, but Autistic,
Animal, or Alien. Where is the goal of speech engineering?
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