Pronunciation Clinic

Which part of your pronunciation to correct first
to become like your model speaker?

N. Minematsu! K. Kamata! M. Takazawa
S. Asakawa! T. Makino? K. Takeuchi! Y. Yamauchi?
T. Nishimura! K. Hirose'
('Univ. of Tokyo, *Chuo Univ.,*Tokyo Int. Univ.)

“ A vowel training system for everybody!!

& Learning not of individual vowels but of a vowel system
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& Two kinds of vocal imitation

“ "Which aspect in teachers’ voices to imitate?” *

@ Vocal imitation performed by myna birds
2 Imitation of absolute properties of voices (sounds)
@ Hearing an adept myna bird say something, one can guess its owner.
Q Vocal imitation performed by learners and children
¢ Imitation of not absolute properties of voices (sounds)
< Pl b: is difficult for young children.
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¢ What in voices to imitate acoustically?
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Male teacher

@ The shape of the vocal tract differs among speakers.

Young learner
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Our answer to the hard question ‘

¢ Holistic and speaker-invariant sound pattern (structure)

Bhattacharyya distance

~"BD-based distance matrix

§ Use of structures for automatic speech recognition
Q Isolated word recognition (word = 5 vowel sequence, e.g. /aeoui/)
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¢ Vowel system and vowel chart

@ Accented pronunciation = vowel system with some distortion
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¢ What's possible in the proposed demo system

Which vowels to correct at first in your case?
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¥ Who is your model speaker?

@ A famous phonetician, a movie star (character) or a sport player??
¢ Which vowels to correct at first to become like him/her?

@ The system can show the shortest cut to the model pronunciation.
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Automatic Pronunciation Evaluation of Japanese EFL
Learners’ Utterances Generated through Shadowing

By Dean Luo, Nobuaki Minematsu (The University of Tokyo)
Yutaka Yamauchi (Tokyo International University)
and Keikichi Hirose (The University of Tokyo)

Automatic Scoring Based on Clustering

® Clustering-based scoring
™ Unsupervised phoneme segmentation based on time-constrained
bottom-up clustering
™ Number of clusters can be used as an indicator of articuratory
efforts ( how articulate the pronunciation is)
® No acoustic models or transcription is needed
™ Language independent
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Unsupervised phoneme segmentation on shadowing

An example of unsupervised phoneme
productions and presented native speech

segmentation
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Correlations between automatic scores
and manually-rated scores (11 speakers)
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Q The demo system can

¢ 1. record or log a history of vowel pronunciation training of each learner.

¢ 2. provide for learners a window of “favorite teacher selection”.
& 3. show which vowel to correct first to become like the selected teacher.

< 4. classify all the registered learners only wrt pronunciation proficiency
by ignoring gender, age, etc very effectively.
& 5. give a very motivating user-interface for pronunciation training.

Classification of learners
A )

¢ Automatic classification of 96 learners by a computer
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@ 8 speakers x 12 pronunciations = 96 simulated learners
< 1 to 8 = pronunciations, A to L = speakers

& By substituting ] vowels for some E ones, 12 v-systems are defined.

Background

® What is shadowing?
® “Repeat-after-me” type exercises that require learners to
reproduce nearly at the same time.
w Improve both listening and speaking skills in language
learning. (Tamai 2001)

W Challenges in evaluating utterances in shadowing
= Speaking style is very different from read speech.
= Pronunciation often becomes very inarticulate and
unintelligible especially in case of beginners.
® Manual scoring is very time-consuming for teachers
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Correlation between two automatic scores

® Comparison of the two automatic scores
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Conclusions

® High correlations between automatic scores and
TOEIC scores or manually-rated scores in
shadowing.
= Much higher than correlations in recently reported works
on read speech evaluation (Chandel et al,2007)
® Shadowing might pose a cognitive load on learners
adequately

™ High correlations between unsupervised clustering-
based scores and supervised GOP scores
= Language-independent clustering-based method is still
available for evaluation
& Any languages, any speaking styles

® Low cost, high availability

“ Structural representation of the vowel systerfi © Developmental changes in vowel training X

& Completely Japanized pronuncnatlon to AE pronunaallon
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“  Classification of all the learners on earth!2.*
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Automatic Scoring based on HMMs

 GOP (Goodness of Pronunciation) scoring
™ Based on HMM likelihood ratio.
™ Requires acoustic models of the target language and transcription.
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P(p|0P)) is the posterior probability that the speaker uttered phoneme p given 0(*
0 is the full set of phonemes
D ,is the duration of phoneme p.

Correlations between automatic scores
and TOEIC scores (27speakers)

» TOEIC score

® Test of English as International Communication
(including listening and reading part)

™ Correlations
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Future Works

m Compare shadowed speech with read speech of
the same speakers.

m Integrate both techniques
% Develop a hybrid system with more reliability

w Compare various shadowing tasks
= Text contents
® Speed of presented speech
¥ Accent and speaking style of presented speech




