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変換不変性を有するダイバージェンスとその一般形
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あらまし 音声には性別や年齢、ノイズなどの非言語的情報が不可避的に含まれている。音声認識において、これらの

非言語的要因に不変な特徴を抽出することは基本的かつ重要な問題である。近年峯松は [16], [17]、バタチャリヤ距離

(Bhattacharyya distance) が可逆的な変換に対する不変性を有することを証明し、音声の構造的不変表象を提案した。

ここで、どのような特徴量が変換不変性を有するかが問題となる。本論文では、f -ダイバージェンスが変換に対して不

変であること、および変換不変性を有する特徴は f -ダイバージェンスでの形で書ける事を示す。情報理論、統計理論

においては、バタチャリヤ距離、KL-ダイバージェンス、Hellinger 距離、Pearsonダイバージェンスなどが知られて

いるが、これらは全て f -ダイバージェンスに属している。本論文では、連続的に発声された日本語 5母音系列を対象

とした認識実験において、バタチャリヤ距離とKL-ダイバージェンスを用いた場合の認識率が最も高いことを示した。
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Abstract Speech signals inevitably include non-linguistic information, such as, gender, age, noise etc. Finding

measures (or features) invariant to the inevitable variations caused by the non-linguistical factors (transforma-

tions) is a fundamental yet important problem in speech recognition. Recently, Minematsu [16], [17] proved that

Bhattacharyya distance (BD) between two distributions is invariant to invertible transforms on feature space, and

developed an invariant structural representation of speech based on it. There is a question: which kind of measures

can be invariant? In this paper, we prove that f -divergence yields a generalized family of invariant measures, and

show that all the invariant measures have to be written in the form of f -divergence. Many famous measures and

divergences in information and statics theory, such as Bhattacharyya distance, KL-divergence, Hellinger distance,

belong to f -divergence. We carried out experiments on recognizing utterances of connected Japanese vowels. The

experimental results indicate that BD and KL have the best performance.

Key words divergence, invariance, structural representation, speech recognition

1. Introduction

Speech signals carry information from multiple sources,

which inevitably include variations caused by non-linguistic

factors, such as, gender, age, noise etc. The same text can

be converted to different acoustic observations by different

speakers and by the same speaker but different time. Mod-

ern speech recognition methods deal with these variations

largely by using statistical methods (such as GMM, HMM) to

model the distributions of data. These methods can achieve

relatively high recognition rates when using proper models

and sufficient training data. However, to estimate reliable

distributions, these methods always require a large number

of samples for training. The successful commercial speech

recognition systems always make use of millions of data from

thousands of speakers for training [12]. However, it is very

different from children’s spoken language acquisition. A child

does not need to hear the voices of thousands of people be-

fore he (or she) can understand speech. This fact largely

indicates that there may exist robust measures of speech
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which are nearly invariant to non-linguistic variations. It

is by these robust measures, we consider that young children

can learn speech by hearing very biased training data called

“mother and father”. This fact is also partly supported by

recent advances in the neuroscience, which shows that the

linguistic aspect of speech and the non-linguistic aspect are

processed separately in the auditory cortex [25].

Recently, Minematsu found that Bhattacharyya distance

(BD) is invariant to transformations (linear or nonlinear) on

feature space [16], [17], and proposed an invariant structural

representation of speech signal. Our previous works have

demonstrated the effectiveness of invariant structural rep-

resentation in both speech recognition task [2], [3], [23] and

computer aided language learning (CALL) systems [18], [19].

There is a question: are there invariant measures other

than BD, or, more generally, which kind of measures can be

invariant? In this paper, we show that f -divergence [1], [6]

provides a family of invariant measures and prove all in-

variant measures of integration type must be written as the

forms of f -divergence. f -divergence family includes many fa-

mous distances and divergences in information and statistics,

such as, Bhattacharyya distance, KL-divergence, Hellinger

distance, Pearson divergence, and so on. We also carried

out experiments to compare several well-known forms of f -

divergence through a task of recognizing connected Japanese

vowel utterances. The experimental results show that BD

and KL have the best performance among the measures com-

pared. A portion of this work will appear in [24].

2. Invariance of f-divergence

In this Section, we gives a brief introduction on f -

divergence at first, and then discuss the invariant property of

f -divergence. In probability theory, Csiszár f -divergence [6]

(also known as Ali-Silvey distance [1]) measures the differ-

ence of two distributions. Formally,

fdiv(pi(x), pj(x)) =

∫
pj(x)g(

pi(x)

pj(x)
)dx, (1)

where pi(x) and pj(x) are two distributions on feature space

X. g : (0,∞) → R is a convex function and g(1) = 0. X can

be an n-dimensional space with coordinates (x1, x2, ..., xn).

In this way, Eq. 1 is a multidimensional integration and

dx = dx1dx2...dxn.

f -divergence has found applications in decision theory [20],

and channel and source coding [5], [26], and pattern recogni-

tion [4]. f -divergence has many beautiful properties. Csiszár

[6], [7] proved the reflexivity of f -divergence,

［Lemma 1］ fdiv(pi(x), pj(x)) = 0, if and only if pi(x) =

pj(x).

Vajda [27] and Liese [15] showed the boundaries of f -

divergence as

表 1 Examples of f -divergence

distance or divergence corresponding g(t) (t =
pi(x)
pj(x)

)

Bhattacharyya distance（注1）
√

t

KL-divergence t log(t)

Symmetric KL-divergence t log(t) − log(t)

Hellinger distance (
√

t − 1)2

Total variation |t − 1|
Pearson divergence (t − 1)2

Jensen-Shannon divergence 1
2
(t log 2t

t+1
+ log 2

t+1
)

［Lemma 2］

0 <= fdiv(pi(x), pj(x)) <= lim
t→0

{g(t) + tg(
1

t
)}. (2)

More properties of f -divergence can be found in [7], [15].

Many well known distances and divergences in statistics and

information theory such as KL-divergence, Bhattacharyya

distance, Hellinger distance etc., can be seen as special cases

of f -divergence. Table 1 lists some examples.

Consider two distributions pi(x) and pj(x) in feature space

X (x ∈ X). Let h : X → Y (linear or nonlinear) denote an

invertible mapping (transformation) function, which convert

x into new feature y. In this way, distributions pi(x) and

pj(x) are transformed to qi(y) and qj(y) (Fig. 1), respec-

tively. We wish to find measures invariant f to transfor-

mation h, f(pi, pj) = f(qi, qj). The invariant measures can

serve as robust features for speech analysis and classification.

We have the following theorem as shown in Fig. 1.

［Theorem 1］ The f -divergence between two distributions is

invariant under invertible transformation h on feature space

X,

fdiv(pi(x), pj(x)) = fdiv(qi(y), qj(y)). (3)

Proof Under transformation y = h(x), distribution qi(y)

is calculated by,

qi(y) = pi(h
−1(y))J(y), (4)

where h−1 denotes the inverse function of h, and J(y) is the

absolute value of the determinant of the Jacobian matrix of

function h−1(y).

Recall dx = J(y)dy, we have,

fdiv(pi, pj)

=

∫
pj(x)g(

pi(x)

pj(x)
)dx

=

∫
pj(h

−1(y))g(
pi(h

−1(y))J(y)

pj(h−1(y))J(y)
)J(y)dy

=

∫
qj(y)g(

qi(y)

qj(y)
)dy

= fdiv(qi, qj).� (5)

（注1）：Bhattacharyya distance is a function of a f-divergence:

BD(pi, pj) = − log
∫

(pi(x)pj(x))1/2dx = − log fdiv(pi, pj).
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図 1 Invariance of f -divergence.

Let F : R → R denote any real value function. It is easy

to see that F (fdiv(pi(x), pj(x))) is also invariant to trans-

formation. In the next, we consider a more general form

of Eq. 1, M(pi(x), pj(x)) =
∫

G(pi(x), pj(x))pj(x)dx, which

we call integration measure. There is a question, whether

or not there exist invariant integration measures other than

f -divergence? The answer is NO.

［Theorem 2］ All the invariant integration measures have to

be written in the form of
∫

pj(x)g( pi(x)
pj(x)

)dx.

Proof Assume M(pi, pj) =
∫

pj(x)G(pi(x), pj(x))dx be

an invariant integration measure, M(pi(x), pj(x)) =

M(qi(y), qj(y)). We have,

M(pi, pj)

=

∫
pj(x)G(pj(x), pi(x))dx

=

∫
pj(h

−1(y))G(pi(h
−1(y)), pj(h

−1(y)))J(y)dy

=

∫
qj(y)G(qi(y)J(y)−1, qj(y)J(y)−1)dy

≡ M(qi(y), qj(y) =

∫
qj(y)G(qi(y), qj(y))dy. (6)

Remind that qj(y) can be any distribution function. Thus

the following equation must always holds,

G(qi(y)J(y)−1, qj(y)J(y)−1) ≡ G(qi(y), qj(y)). (7)

Otherwise, we can find qj(y) that breaks Eq. 6.

Introduce functions t(y) = qi(y)/qj(y) and G′(t, qj) =

G(qi, qj). Thus Eq. 7 becomes:

G′(t(y), qj(y)J(y)−1) ≡ G′(t(y), qj(y)). (8)

Remind that we have no limitation on transformation h

other than it is invertible. Thus it is possible to set that

qj(y) = J(y). Then, we have,

G′(t(y), qj(y)) ≡ G′(t(y), 1). (9)

Therefore G′(t(y), qj(y)) can be written into the form

of G′(t(y)) = g(qi(y)/qj(y)). In this way, we prove

that M(pi(x), pj(x)) has to be written in the form of∫
pj(x)g( pi(x)

pj(x)
)dx. �

Theorem 1 and Theorem 2 together show the sufficiency

and necessity of the invariance of f -divergence. Generally,

f -divergence may not be a metric, since it may not sat-

isfy symmetry rule (fdiv(pi(x), pj(x)) |= fdiv(pj(x), pi(x)))

and subadditivity triangle inequality (fdiv(pi(x), pj(x)) +

fdiv(pj(x), pk(x)) < fdiv(pi(x), pk(x))). But there exist spe-

cial forms of f -divergence, which is also a metric. Hellinger

distance is such an example,

HD(pi, pj) =

∫
pi(x)(

√
pj(x)

pi(x)
− 1)2dx

=

∫
(
√

pi(x) −
√

pj(x))2dx. (10)

More generally, it was shown that a subclass of f -divergence,

named fβ-divergence, also satisfies the constraints of met-

ric [21].

3. Calculation of f-divergence

There is a problem of how to calculate f -divergence. Un-

fortunately, in general case, there exists no closed-form solu-

tion for f -divergence of Eq. 1. In the next, we will discuss

several techniques to calculate f -divergence for the general

case and for the special types of distributions.

3. 1 Calculation of f-divergence using Monte-

Carlo sampling

Since the direct calculation of f -divergence is intractable,

we can consider approximate methods based on Monte-Carlo

sampling [8]. This method draws a set of independent sam-

ples {xk}K
k=1 from the distribution pj(x) at first. Assume K

is large enough. Then, f -divergence can be approximated by

fα(pi(x), pj(x)) ≈ 1

n

K∑
k=1

g(
pi(x

k)

pj(xk)
). (11)

But this can be always computationally expensive. Espe-

cially when x has a high dimension, we need a huge number

of random vectors for approximating f -divergence.

3. 2 f-divergence of Gaussian distributions

When the distributions are Gaussian, there may exist

closed-form solutions. Assume pi(x) and pj(x) are two Gaus-

sian distributions with mean µi and µj and covariance ma-

trix Σi and Σj , respectively. The canonical parametrization

of pi(x) is,

pi(x) = exp (αi + ηT
i x − 1

2
xT Λix), (12)

where Λi = Σ−1
i , ηi = Σ−1

i µi and αi = −0.5(d log 2π −
log |Λi| + ηt

iΛiηi. Similarly, we have

pj(x) = exp (αj + ηT
j x − 1

2
xT Λjx). (13)

where Λj = Σ−1
j , ηj = Σ−1

j µj and αj = −0.5(d log 2π −
log |Λj | + ηt

jΛjηj). Then, Eq. 1 can be written into,
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図 2 Example of sigma points.

fdiv(pi(x), pj(x)) =

∫
exp (αj + ηT

j x − 1

2
xT Λjx)

g(exp(αi − αj + (ηi − ηj)
T x − 1

2
xT (Λi − Λj)x))dx. (14)

The above form is near to Fourier transform or bilateral

Laplace transform which has been widely studied. Many

forms of g can lead to closed form solutions of the integra-

tions of f -divergence. Some examples are given as follows,

1) Bhattacharyya distance:

BD(pi(x), pj(x)) =

1

8
(µi − µj)

T (
Σi + Σj

2
)−1(µi − µj) +

1

2
log

|(Σi + Σj)/2|
|Σi|1/2|Σj |1/2

.

(15)

2) KL divergence:

KL(pi(x), pj(x)) =

1

2
(log

|Σj |
|Σi|

+ tr(Σ−1
j Σi) + (µj − µi)

T Σ−1
j (µj − µi)). (16)

3) Hellinger distance:

HD(pi(x), pj(x)) = 1 − exp(−BD(pi(x), pj(x))). (17)

3. 3 f-divergence of Gaussian Mixtures

When pi(x) and pj(x) are Gaussian mixtures, there ex-

ist fast approximation techniques other than Monte Carlo

sampling. For example, one can use unscented transform

[10], [13] to calculate the f -divergence. The procedure is de-

scribed as follows,

Let Gaussian mixture pj(x) =
∑M

m=1 wmN(x|µm, Σm).

For each Gaussian distribution N(x|µm, Σm), we can cal-

culate a set of 2n “sigma” points as

xk
m = µm +

√
λk

mUk
m, (18)

xk+n
m = µm −

√
λk

mUk
m, (19)

where (k = 1, 2, ..., n), λk
m and Uk

m are the k-th eigenvalue

and eigen vector of Σm, respectively. It is not hard to see

that these points could capture the mean and covariance in-

formation of N(x|µm, Σm). Examples of sigma points are

depicted in Fig. 2.

Using unscented transform, f -divergence can be approxi-

mated by the following formula,

fdiv(pi(x), pj(x)) ≈ 1

2n

M∑
m=1

wm

2n∑
k=1

g(
pi(x

k
m)

pj(xk
m)

). (20)

Although the above calculation resembles the Monte-Carlo

sampling, it doesn’t require random sampling, and it only

needs a small number of points. Therefore, it is much faster

than the Monte-Carlo sampling. One may also consider

the variational approximation techniques to calculate the f -

divergence between two Gaussian mixtures [11].

4. Invariant structural representation us-
ing f-divergence

f -divergence can be used to construct the invariant struc-

tural representation of a pattern. Consider pattern P in fea-

ture space X. Suppose P can be decomposed into a sequence

of m events {pi}m
i=1. Each event is described as a distribu-

tion pi(x). We calculate the f -divergence dP
ij between two

distributions pi(x), pj(x), and construct an m×m divergence

matrix DP with DP (i, j) = dP
ij and DP (i, i) = 0. Then DP

provides a structural representation of pattern P . Assume

there is a map f : X → Y (linear or nonlinear) which trans-

forms X into a new feature space Y . In this way, pattern

P in X is mapped to pattern Q in Y , and event pi is trans-

formed to event qi. Similarly, we can calculate structure

representation DQ for pattern Q. From Theorem 1, we have

that DQ = DP , which indicates that the structural represen-

tation based on f -divergence is invariant to transformations

on feature space.

In the next, we describe a brief introduction on how to

obtain a structural representation from an utterance [2], [16].

As shown in Fig. 3, at first, we calculate a sequence of cep-

stral features from input speech waveforms. Then an HMM

is trained based on that cepstrum sequence and each state

of HMM is regarded as event pi. Thirdly we calculate the

f -divergences between each pair of pi and pj . These dis-

tances will form an m × m distance matrix D with zero

diagonal, which is the structural representation. For con-

venience, we can expand D into a vector z with dimension

m(m − 1). If the f -divergence used satisfies the symmetry

rule fdiv(pi, pj) = fdiv(pj , pi) (for examples, Bhattacharyya

distance, Hellinger distance, total variations), D is a sym-

metric matrix. In this case, we only need use the upper

triangle of D and z has dimension m(m − 1)/2.

It can be shown that many non-linguistic variations [16],

[17], such as the length of vocal tract [22], can be modeled

as transformation of feature space. Suppose that X and Y

represent the acoustic spaces of two speakers A and B, and

P and Q represent two utterances of A and B, respectively.
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図 4 Utterance matching by shift and rotation.

Then h can be seen as a mapping function from A’s utter-

ance to B’s. In fact, this problem has been widely addressed

in the speaker adaptation of speech recognition research and

the speaker conversion of speech synthesis research. In Max-

imum Likelihood Linear Regression (MLLR) based speaker

adaption [14], a linear transformation: y = h(x) = Hx + d

is used, where H and d denote rotation and translation pa-

rameters respectively. For matching utterances P and Q,

the speaker adaption methods need to explicitly estimate

transformation parameters (i.e. H and d), which lead to

the minimum difference. This minimum difference serves as

a matching score of utterances. [17] showed that the acous-

tic matching score of two utterances after shift and rotation

(Fig.4) can be approximated only with the difference of the

two structures of the utterances without explicitly estimating

transformation parameters.

5. Experiments

To compare the performance of various forms of f -

divergence on speech recognition, we used the connected

Japanese vowel utterances [2] in experiments. It is known

that acoustic features of vowel sounds exhibit larger between-

speaker variations than consonant sounds. Each word in the

表 2 Comparisons of recognition rates

Method NN NM GM RDSA

Bhattacharyya dis. 93.0% 95.6% 96.4% 98.2%

Hellinger dis. 89.0% 95.1% 56.6% 96.0%

symmetric KL-div. 93.2% 95.6% 96.4% 98.4%

data set corresponds to a combination of the five Japanese

vowels ‘a’,‘e’,‘i’,‘o’ and ‘u’, such as ‘aeiou’,‘uoaie’, ... . So

there are totally 120 words. The utterances of 16 speakers

(8 males and 8 females) were recorded. Every speaker pro-

vides 5 utterances for each word. So the total number of

utterances is 16×120×5=9,600. Among them, we use 4,800

utterances from 4 male and 4 female speakers for training

and the other 4,800 utterances for testing.

For each utterance, we calculate twelve Mel-cepstrum fea-

tures and one power coefficient. Then HMM training is used

to convert a cepstrum vector sequence into 25 events (distri-

butions). Since we have only one training sample, we used an

MAP-based learning algorithm [9]. Each state (event) of an

HMM is described by a 13-dimension Gaussian distribution

with a diagonal covariance matrix. Following [2], we divided

the 13D cepstrum feature steam into 13 multiple sub-streams

and calculated the structures for each sub-stream. So an ut-

terance is represented as a set of 25× 24× 13 = 7, 800 edges.

When using symmetric f -divergence, such as BD and HD,

only half of the edges (3,900) are necessary. More details can

be found in our previous works [2], [23].

We calculated the Bhattacharyya distance (BD), Hellinger

distance (HD) and symmetric KL-divergence (SKL) for

building structures, respectively. As for classification, we

used the following classifiers: nearest neighbors (NN), near-

est mean (NM), Gaussian distribution model (GM) and ran-

dom discriminant structure analysis (RDSA) [23]. For NN

and NM, Euclidean distance is used. For GM, we used di-

agonal covariance matrices. For RDSA [23], we used 20 ran-

domly selected sub-structures with each including 700 edges.

The results are summarized in Table 2. We can find that

the performances of symmetric KL-divergence and Bhat-

tacharyya distance are similar. And Hellinger distance has

the lowest recognition rates.

We reduces the numbers of speakers in training data. We

randomly selected k (1 <= k <= 7) speakers from the 8 train-

ing speakers and use their data for learning the classifiers.

For each k, we repeat this procedure 8 times and calculate

the average recognition performance. The RDSA classifier

is used for classification due to its good performance. The

results are given in Fig. 5.

6. Conclusions

Speech recognition faces the difficulty of non-linguistic
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図 5 Comparison of the recognition rates of different distances

and different numbers of speakers in training data.

variations exhibited by speech signals. Recently, an invari-

ant representation for speech has been proposed for speech

recognition, which is composed by Bhattacharyya distances

invariant to transformation. So there is a question which

kind of measure can be invariant. This paper proves that

f -divergence between two distributions is invariant to invert-

ible transformation (linear and nonlinear) on feature space,

and shows all invariant integration measures have to be writ-

ten in the form of f -divergence. We discuss the properties of

f -divergence and study how to calculate f -divergence for the

general case and for Gaussian and Gaussian mixture distri-

butions. We described a short review on how to construct an

invariant structural representation of an utterance by using

f -divergences. In the experiment, we compare the perfor-

mance of several well-known forms of f -divergences through

recognizing utterances of Japanese vowels. The results show

that Bhattacharyya distance and symmetric KL-divergence

achieve the best performance among all the measures com-

pared. It is noted that the invariance of f -divergence is very

general, and doesn’t limit to speech signal. The proposed

theories may have applications in other signal analysis and

pattern recognition tasks.
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