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Abstract One of the fundamental problems in speech engineering is phoneme segmentation. Approaches to

phoneme segmentation can be divided into two categories: supervised and unsupervised segmentation. The ap-

proach of this paper belongs to the 2nd category, which tries to perform phonetic segmentation without using any

prior knowledge on linguistic contents and acoustic models. In an earlier work, we formulated the segmentation

problem into an optimization problem through statistics and information analysis. An objective function, summa-

tion of squared error (SSE), is developed by using Euclidean distance of cepstral features. However, it is not known

whether or not Euclidean distance yields the best distance metric to estimate the goodness of segmentations. A

popular generalization of Euclidean distance is Mahalanobis distance (MD). In this paper, we study whether and

how MD can be used to improve the performance of segmentation. The essential problem here is how to deter-

mine the parameters (covariance matrix) for MD calculation. We deal with this problem in a learning framework

and propose two criteria for determining the optimal parameters: Minimum of Summation Variance (MSV) and

Maximum of Discrimination Variance (MDV). MSV minimizes the summation of variance within phonemes, while

MDV maximizes the variance between phonemes and minimizes the variance within phonemes at the same time.

Both of them can lead to close form solutions by using matrix calculation. We also propose an algorithm to learn

the parameters without using labeled data. We carried out experiments on the TIMIT database to eveluate the

proposed methods. The results indicate that the use of learning MD can increase the correct recall rates. We also

found the use of power can further improve the results.
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1. Introduction

Phoneme segmentation is a basic problem in speech engi-

neering. The objective of phoneme segmentation is to divide

a speech stream into a string of phonemes. Automatic Speech

Recognition (ASR) models often require reliable phoneme

segmentation in the initial training phase, while Text-to-

Speech (TTS) systems need a large speech database with

correct phoneme segmentation information for improving the

performance. Human speech is a smoothly changing continu-

ous signal, which does not include explicit separation marks

such as the spaces in written language. Moreover, human

speech is smoothly continuous signal due to the temporal con-

straints of vocal tract motions. The difficulty of phoneme seg-

mentation comes from the co-articulation of speech sounds,

where acoustic realization of one phoneme may blend or fuse

with its adjacent sounds. This phenomenon can even exist

at a distance of two or more phonemes. All these facts make

automatic phoneme segmentation a challenging problem.

Previous approaches to phoneme segmentation can be clas-

sified into two categories: supervised and unsupervised seg-

mentation. In the first case, both the linguistic contents and

the acoustic models of phonemes are available. Thus the seg-

mentation problem can be reduced to align speech signals

with a string of acoustic models. Perhaps the most famous

approach in this category is HMM-based forced alignment [2].

The second category tries to perform phonetic segmentation

using no prior knowledge on linguistic contents and acoustic

models. The approach of this paper belongs to the second

class. The unsupervised segmentation is similar to the situa-

tion that infants acquire spoken language [11]. Infants don’t

have acoustic and linguistic models for segmentation. How-

ever, psychological facts indicate that infants become able

to segment speech according to acoustic difference between

speech sounds and cluster speech segments into categories [8].

It is only by this procedure that infants can gradually con-

struct the speech model of their native languages.

Most of the previous approaches to this problem focus on

detecting the change points of speech stream and take these

change points as the boundaries of phonemes. Aversano et.
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al [1] identified the boundaries as the peaks of jump func-

tion. Dusan and Rabiner [3] detected the “maximum spec-

tral transition” positions as phoneme boundaries. Estevan

et. al [4] employed maximum margin clustering to locate

boundary points. In our earlier work, we formulated the

segmentation problem as an optimization problem by using

statistics and information theory analysis [9], while the criti-

cal question is how to evaluate the goodness of segmentation.

Generally speaking, a good segmentation should minimize

the within-phoneme variance while maximize the between-

phoneme variance. In [9], we have developed a simple ob-

jective function, the Summation of Square Error (SSE). The

experimental results [9] showed that minimizing SSE by Ag-

glomerative Segmentation (AS) algorithm can achieve better

results than previous methods [1], [3], [4]. Although this ob-

jective is computationally efficient, SSE is based on Euclidean

distance in cepstral space and it is not known whether or not

Euclidean distance yields the best distance metric to esti-

mate the goodness of segmentations. In fact, it was shown

that the weighted cepstral distance can achieve better perfor-

mance than Euclidean distance for DTW based speech recog-

nition [12]. A popular generalization of Euclidean distance

is Mahalanobis distance. In this paper, we study whether

and how Mahalanobis distance can be used to improve the

performance of segmentation. The essential problem here

is how to determine the parameters (covariance matrix) for

Mahalanobis distance calculation. We deal with this prob-

lem in a learning framework and develop two criteria for de-

termining the optimal parameters: Minimum of Summation

Variance (MSV) and Maximum of Discrimination Variance

(MDV). MSV tries to minimize the summation of variance

within phonemes, while MDV aims to maximize the vari-

ance between phonemes and to minimize the variance within

phonemes at the same time. We propose an algorithm to es-

timate parameters without using labeled sequences. The per-

formances of the proposed methods are evaluated through ex-

periments on the TIMIT database. The experimental results

indicate that the learning Mahalanobis distance can help im-

proving the segmentation results. We also found that the

results can be further improved by incorporating power co-

efficients.

2. Optimal Segmentation

In this section, we introduce the used notations at first,

and then give a brief review of our previous work on op-

timal segmentation [9]. Let X = x1, x2, ..., xn denote a se-

quence of mel-cepstrum vectors calculated from an utter-

ance, where n is the length of X and xi is a d-dimensional

vector [x1
i , x

2
i , ..., x

d
i ]T . The objective of segmentation is to

divide sequence X into k non-overlapping contiguous subse-

x1x2 …xe1

r1

xc2… xe2

r2

… xck … xek

rk

s1 s2 sk

SequenceX

PhonemeR

Figure 1 Diagram of Segmentation Model.

quences (segments) where each subsequence corresponds to

a phoneme. Use S = {s1, s2, ..., sk} to denote the segmen-

tation information, where sj = {cj , cj + 1, ..., ej} (cj and ej

denote the start and end indices of the j-th segment.). Let

Xcj :ej (or Xsj ) represent the j-th segment xcj , xcj+1, ..., xej .

Its size |sj | is ej − cj + 1.

For speech signal, it is natural to make the assumption

that acoustic observations of each phoneme is generated from

an independent source. Let R = {r1, r2, ..., rk} denote the

phoneme sequence, and p(xi|rj) represent the probability

model of observing xi given source rj . Thus we have,

p(X|S, R) =

k
Y

j=1

Y

i∈sj

p(xi|rj) =

k
Y

j=1

ej
Y

i=cj

p(xi|rj). (1)

Using maximum likelihood estimation (MLE), the optimal

segmentation can be formulated as

Ŝ = arg min
S

{− log(p(X|S, R))}. (2)

Like most speech applications, we assume that rj is a multi-

variable normal distributions whose mean and covariance ma-

trix are denoted by mj and Σj . If segmentation sj is given,

we can estimate the parameters by MLE. Using the estimated

parameters r̂j(m̂j , Σ̂j), Eq. 2 becomes,

− log p(X|S, R̂) =

k
X

j=1

ej
X

i=cj

− log(p(xi|rj))

=
nd

2
log(2π) +

1

2

k
X

j=1

|sj | log det(Σ̂j) +
nd

2
. (3)

It can be shown that the above Equation is in accordance

with the minimum description length principle (MDL) [10].

However, in practice, this approach may raise a problem, a

phoneme usually only consists of a small number of frames,

which makes it difficult to estimate reliable covariance ma-

trix Σ̂. Especially, when the number of frames is less than

d, the covariance matrix is singular and |Σ̂| = 0. Moreover,

the calculation of matrix determinant is computationally ex-

pensive. To circumvent this difficulty, we fixed the covari-

ance matrix Σ as an unit matrix I and only estimated mean

m̂j = 1/|sj |
P

x∈sj
x [9]. The use of other covariance matrix

leads to Mahalanobis distance, which will be discussed in the

next sections. In this way, Eq. 3 becomes,
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− log p(X|S, R̂) =
nd

2
log(2π) +

1

2

k
X

j=1

ej
X

i=cj

||xi − m̂j ||2.

(4)

Note only the second item is influenced by segmentation S.

Thus the problem is equal to minimizing the following Sum-

mation of Squared Error function (SSE),

fSSE(X, S) =

k
X

j=1

ej
X

i=cj

||xi − m̂j ||2. (5)

The above formula is the same as the objective function of

k-means clustering (Chapter 3.5 [7]). The difference between

our problem and k-means is that k-means needs not consider

the time constraint, which is important for our phoneme seg-

mentation.

In [9], we introduce the Agglomerative Segmentation (AS)

algorithm, which begins with each frame as a segment and

iteratively merges two consecutive segments into one in a

greedy fashion. The algorithm has a time complexity of

O(n). We also proposed an efficient implementation of this

algorithm by using integration functions.

3. Segmentation using Mahalanobis dis-
tance

The SSE objective Eq. 5 is based on simple Euclidean dis-

tance, where each dimension of cepstrum features is treated

equally and the correlation between these features is ignored.

However, in real problems, the cepstrum features can be cor-

related and different features may have different weights for

segmentation. The Euclidean distance comes from the use

of I as covariance matrix in Eq. 3. We may consider an-

other covariance matrix. Let Σ denote a full rank covariance

matrix. Euclidean distance ||xi − xj ||2 can be generalized to

Mahalanobis distance (xi − xj)
T Σ−1(xi − xj).

In this way, we can define a Mahalanobis distance based

objective function as follows,

fMD(X, S) =

k
X

j=1

ej
X

i=cj

(xi − m̂j)
T Σ−1(xi − m̂j). (6)

If Σ is a diagonal matrix, this is equal to weight the cepstrum

features,

fw(X, S) =
k

X

j=1

ej
X

i=cj

d
X

q=1

wq(x
q
i − m̂q

j)
2, (7)

where wq denotes the weight of q-th cepstrum feature. If

Σ is not diagonal, we can apply eigen-decomposition on it :

Σ = UT ΛU , where U consists of the eigen vectors and Λ is

a diagonal matrix whose diagonal components are the eigen

values. Then, Eq. 6 can be written into the SSE function on

transformed cepstrum features Ax:

fMD(X, S) =

k
X

j=1

ej
X

i=cj

||Axi − Am̂j ||2, (8)

where the transformation matrix A = Λ−1/2U . It is easy to

examine that AT A = Σ−1. The formulation of Eq. 8 allows

us to use the Agglomerative Segmentation (AS) algorithm [9]

to optimize the objective function Eq. 6 .

In classical Mahalanobis distance, Σ is estimated as the

covariance matrix of the total data

Σ =
1

n

n
X

i=1

(xi − m)(xi − m)T , (9)

where mean m =
Pn

i=1 xi/n. However, this calculation only

considers the statistical characteristics of the whole data. We

are more interested in a distance metric which is small enough

for cepstral features within the same phoneme while keeps

large enough for cepstral features of different phonemes. In

the following, we will study this problem in a learning frame-

work. By limiting to Mahalanobis distance, the objective

of learning parameters is to estimate covariance matrix Σ.

Suppose there exists a set of training utterances D with la-

beled phoneme boundaries. We are going to develop two

criteria which minimize the feature variance within the same

phoneme and (or) maximize feature variance between differ-

ent phonemes. Assume |Σ| = 1 to avoid scaling factors.

3. 1 Criterion 1: Minimization of Summation

Variance

The first criterion is to find matrix Σ, which minimizes the

summation of variances within phonemes. Mathematically,

this can be formulated as

min
Σ

MSV (D, Σ) =

min
Σ

X

X∈D

h

Pk
j=1

Pej

i=cj
(xi − m̂j)

T Σ−1(xi − m̂j)
i

, (10)

where m̂j is the mean of the j-th segment in utterance X.

Define within-phoneme variance matrix of utterance set D

Sw =
X

X∈D

k
X

j=1

ej
X

i=cj

(xi − m̂j)(xi − m̂j)
T . (11)

In the following, we deduce the optimal solution for Eq. 10.

Remind AT A = Σ−1, Eq. 10 can be written into

MSV (D, Σ) =
X

X∈D

k
X

j=1

ej
X

i=cj

Tr(A(xi − m̂j)(xi − m̂j)
T AT )

= Tr(ASwAT ), (12)

where “Tr” denotes the trace of a matrix.

Since |AT A| = 1, we have the Lagrangian function as fol-

lows,

L(A, λ) = Tr(ASwAT ) + λ(|AT A| − 1). (13)
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Calculating the derivative of Eq. 13 to A, we have

∂L(A, λ)

∂A
=

∂Tr(ASwAT )

∂A
+

∂λ(|AT A| − 1)

∂A

= 2ASw + 2λ|AT A|A−T = 0. (14)

Therefore,

Sw = −λ(AT A)−1. (15)

Remind |AT A| = 1 and AT A = Σ−1, the optimal covariance

matrix can be calculated as

ΣMSV =
1

|Sw|1/d
Sw. (16)

3. 2 Criterion 2: Maximization of Discriminant

Variance

In Eq. 10, we only consider the within phoneme variances.

The second criterion tries to take account of the variance

of two adjacent phoneme, that is, to maximize the between

phoneme variances and to minimize the within phoneme vari-

ances. Formally,

max
Σ

X

X∈D

k−1
X

j=1

ej+1
X

i=cj

(xi − m̂j,j+1)
T Σ−1(xi − m̂j,j+1) (17)

min
Σ

X

X∈D

k
X

j=1

ej
X

i=cj

(xi − m̂j)
T Σ−1(xi − m̂j), (18)

where m̂j,j+1 is the mean of the j-th and the j + 1-th seg-

ment in X. It is noted that we only consider the between

variances of two adjacent phonemes in Eq. 18. This is be-

cause, for phoneme segmentation, the same phoneme may

appear more than one time in a single sequence, and for seg-

mentation problem the difference of adjacent phonemes are

most important.

Define between-phoneme variance matrix of utterance set

D as

Sb =
X

X∈D

k−1
X

j=1

ej+1
X

i=cj

(xi − m̂j,j+1)(xi − m̂j,j+1)
T . (19)

Using the same technique of Eq. 12, we can reduce Eq. 17,

18 to,

max
Σ

Tr(ASbA
T ), (20)

min
Σ

Tr(ASwAT ). (21)

Eq. 17, 18 is a multi-objective problem. The usual approach

to a multi-objective problem is to convert it to a single ob-

jective one.

Basically, there are two choices. One is based on subtrac-

tion of trace

min
Σ

{Tr(ASwAT ) − αTr(ASbA
T )} (22)

Figure 2 Variance of different dimensions .

where α is a coffecient; the other is based on ratio of trace,1

max
Σ

Tr(ASbA
T )

Tr(ASwAT )
. (23)

Eq. 22 can lead to a close form solution

ΣMDV ST =
Tr(ASwAT ) − αTr(ASbA

T )

|Tr(ASwAT ) − αTr(ASbAT )|1/d
. (24)

However, there is no close form solution for Eq. 23. [6] showed

an approximate answer for Eq. 23 as

ΣMDV RT =
1

|S−1
b SwS−1

b |1/d
S−1

b SwS−1
b . (25)

It can be seen that the estimation of Σ depends on within-

phoneme matrix Sw and between-phoneme matrix Sb. We

calculated global covariance matrix Σ by Eq. 9, within-

phoneme matrix Sw by Eq. 11 and between-phoneme ma-

trix Sb by Eq. 19 of the utterances in the TIMIT database.

We found that the main energy is located in the diagonal

for all three matrices. Fig. 2 shows the diagonal compo-

nents of them (the summation are normalized to one). It can

be seen that generally the variance decreases as dimension

index increases, however the curve of Sb shows a vibration

pattern. The curve of Sw decreases slowly than that of Σ.

Usually, the larger the variance is, the smaller the weight of

its corresponding feature is.

3. 3 Fully unsupervised approach

In Section 3. 2 and 3. 1, we assume there is a set of data

with labeled boundary information for estimating the covari-

ance matrix Σ and develop two criteria: Minimize Summa-

tion of Variance and Maximize Discriminant Variance. How-

ever, there are two limitations, 1) a set of labeled data must

be available for learning the optimal matrix, and 2) once Σ

is learned it is fixed and cannot adapt to the new data. In

1Someone may suggest to use trace ratio maxΣ Tr(
ASbAT

ASwAT ) as a cri-

teria, which is widely adopted in linear discriminant analysis (LDA).

However, it can be proved that trace ratio is invariant to Σ.
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Algorithm 1 Iterative Segmentation Algorithm

1: INPUT A set of utterance D = {X}, the number of segments

kX for each utterance X and the maximum iteration number

T .

2: Initialize Σ0 as an unit matrix I and iteration index t = 0.

3: while Not Convergence and t < T do

4: For each utterance X, calculate its segmentation St
X by min-

imizing Eq. 6 (Σ is set as Σt).

5: Calculate St
w based on segmentations St

X and Eq. 11.

6: Update Σt by using Eq. 162.

7: t = t + 1.

8: end while

9: OUTPUT segmentation St
X .

this Section, we are going to develop a fully unsupervised

approach to deal with this problem, where Σ is learned from

unlabeled utterances.

Given utterance data for segmentation, our problem is

somehow similar to egg and chicken: if the segmentation is

known, we can estimate an optimal Σ by MSV or MDV cri-

teria; and if a better Σ is given, we can estimate a better seg-

mentation by minimizing Eq. 6. Based on this observation,

we introduce the following Iterative Segmentation Algorithm

(ISA) which iteratively updates segmentation and Σ.

The Iterative Segmentation Algorithm is similar to the

mechanism of infants speech acquisition. Psychological re-

searches indicate that infants do not have acoustic models

of the phonemes of their native languages, but they have

the ability to discriminate sounds [8]. This discriminant abil-

ity resembles the distance metric we used for segmentation,

which enable infants to preliminarily segment speech signals.

Then the infants can adapt their sound discriminant ability

based on the segmentation results. This procedure is con-

sidered to repeat during the infants build acoustic models of

their native languages.

4. Experiments

We use the training part from the TIMIT American En-

glish acoustic-phonetic corpus [5] to evaluate and compare the

proposed objective functions. The database includes 4,620

sentences from 462 American English speakers of both gen-

ders from 8 dialectal regions. It includes more than 170,000

boundaries, totally. The sampling frequency is 16kHz. For

each sentence, we calculate the spectral features from speech

signals by using 16ms Hamming windows with 1ms shift, and

then transform spectral features into 12 mel-cepstrum coef-

ficients.

2Although it is possible to estimate Σ by Eq. 25 or Eq. 24, we ex-

perimentally found this does not lead to good segmentation results in

iterative segmentation algorithm. This is partly because that Eq. 25

and Eq. 24 are too sensitive to the segmentations.

Table 1 Recall rates using ED, MD and learning MD

Method ED MD MSV MDV-RT MDV-ST

20ms 76.8% 73.6% 77.7% 77.6% 77.2%

30ms 86.7% 86.3% 88.2% 87.9% 88.1%

40ms 92.4% 92.9% 93.7% 93.5% 93.8%

For all the following experiments, the agglomerative seg-

mentation (AS) algorithm [9] is used to find the optimal seg-

mentation. The stop number of the AS algorithm is set as

the number of phonemes in a sentence. For each method, we

count how many ground truth boundaries are detected within

a tolerance window (20∼40ms). The recall rate is adopted

as a comparison criterion,

Recall rate =
number of boundaries detected correctly

total number of ground truth boundaries
.

4. 1 Experiment 1: segmentation using Maha-

lanobis distance

In the first experiment, we make comparisons between Eu-

clidean distance (ED), classical Mahalanobis distance (MD)

(Eq. 9), and learning Mahalanobis distance with parame-

ters Σ estimated by MSV (Eq. 16), MDV-ST (Eq. 24) and

MDV-RT (Eq. 25) for segmentation. In classical MD, the co-

variance matrix is calculated for each utterance. Among all

4,620 utterances, we randomly select 56 sentences for learn-

ing the covariance matrix of MSV, MDV-ST and MDV-RT.

The results are summarized in Table 1. We can find that

classical MD does not lead to better performance than Eu-

clidean distance, while MD using learning parameters (MSV,

MDV-RT and MDV-ST) can improve the recall rates com-

pared to ED and classical MD. Among all these methods

compared, MSV has the best results. But the results of MSV,

MDV-RT, and MDV-ST are very near.

4. 2 Experiment 2: segmentation with unsuper-

vised learning MD

In the first experiment, the covariance matrix is learned

from a set of utterances with labeled boundaries. In this Sec-

tion, we make no use of the labeled utterances. Covariance

matrix Σ are estimated by iterative segmentation algorithm

descried in Section 3. 3. The segmentation results are sum-

marized in Table 2. It can be seen that we only need to

execute iterative segmentation algorithm for a few iterations

(2 or 3) to obtain good segmentation results. The increase of

iteration number does not lead to significant improvements

of recall rates. It can be seen that the unsupervised learning

MD can achieve comparable results with supervised learning

MD in Section 4. 1.

4. 3 Experiment 3: incorporation of power

In the above two experiments, we only made use of cep-

stral coefficients and did not consider power coefficient. In

the next, we take account of power coefficient into the seg-
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Table 2 Recall rates using unsupervised learning MD

Iteration t 0 1 2 3 10

20ms 76.8% 76.9% 77.4% 77.6% 77.9%

30ms 86.7% 87.8% 87.2% 87.8% 87.9%

40ms 92.4% 93.6% 92.7% 93.4% 93.3%

Table 3 Recall rates using Power

Method MSV+P1 MSV+P2 MDV-RT+P1 MDV-RT+P2

20ms 79.0% 81.4% 80.2% 81.8%

30ms 89.3% 90.0% 89.4% 89.8%

40ms 94.4% 94.3% 94.2% 94.0%

mentation cost function. Let oi denote a power coefficient

at i-th frame. Basically, there are two methods to incorpo-

rate power. One is to argument cepstrum vector xi into a

new vector xi = [xi, oi], then the same analysis for cepstrum

vector can be applied. The other is to consider power and

cepstrum independently. In this way, the objective function

Eq. 6 bceomes:

fMD(X, S) =
k

X

j=1

ej
X

i=cj

{(xi − m̂j)
T Σ−1(xi − m̂j) + β(oi − ôj)

2},

(26)

where ôj is the average power of the j-th segment and β is a

constant to take the balance between cepstrum and power.

We conducted experiments to compare the two different

methods, where Σ is estimated by MSV (Eq. 16) and MDV-

RT (Eq. 25) in Section 4. 1 due to their good performance.

The results are shown in Table 3, where ‘P1’ denotes the

first method to incorporate power and ‘P2’ denotes the sec-

ond. We find that the using of power features can signifi-

cantly improve the recall rates about 3-5 percents. The sec-

ond method to incorporate power (treat power and cepstrum

independently) usually achieves better results than the first

method (use argument feature vector).

4. 4 Comparisons with other methods

We make comparisons of our results with other published

results. Tolerance window size is set as 20ms, since it is most

widely used. Our best recall rate is 81.8% shown in Table 3.

In [3], with the same database, the authors showed a detected

rate of 84.5%, and among them, as 89% are within 20ms. So

their rate is 0.845× 0.89=75.2%. Moreover, here our inser-

tion rate is 20.9%, which is lower than 28.2% shown by [3]. [4]

used the testing part of TIMIT database, which includes less

number of sentences (1,344) than we used. When their over-

segmentation equals zero, the correct detection rate in their

experiments corresponds to our recall rate. In this case, our

result is better than theirs (76.0%) [4]. In [1], the authors use

a subset of TIMIT database which contains 480 sentence and

showed a recall rate 73.6%. We had obtained a recall rate

77.5% in a previous work [9], which is lower than 81.8% in

this paper. Moreover, unlike the method in [9], we do not

need to calculate the determinant of covariance matrix for

each possible segmentation which is computationally expen-

sive. Although our results are still lower than those of the

HMM-based segmentation methods [2], our methods do not

make use of prior knowledge such as linguistic contents and

acoustic models.

5. Conclusions

This paper addresses the unsupervised phoneme segmenta-

tion problem by using Mahalanobis distance. We develop two

optimization criteria, namely, minimization of summation of

variance (MSV) and maximization of discriminant variance

(MDV). We deduce the optimal solutions of MSV and MDV

by using matrix calculation. We also propose an iterative

segmentation algorithm (ISA) to learn covariance matrix of

MD calculation without using labeled data. We carried out

experiments on the TIMIT database. The results show that

the use of learning MD can improve the segmentation per-

formance. The MD learned with unlabeled data by ISA can

achieve similar recall rates as the MD learned with labeled

data. We also find that the segmentation results can be fur-

ther improved by incorporating power coefficient.

References

[1] G. Aversano and et. al. A new text-independent method for

phoneme segmentation. IEEE Midwest Sym. on Cir. and

Sys., pages 516–519, 2001.

[2] F. Brugnara and et. al. Automatic segmentation and labeling

of speech based on Hidden Markov Models. Speech Commu-

nication, 12(4):357–370, 1993.

[3] S. Dusan and L. Rabiner. On the Relation between Maxi-

mum Spectral Transition Positions and Phone Boundaries.

INTERSPEECH, pages 17–21, 2006.

[4] Y. P. Estevan, V. Wan, and O. Scharenborg. Finding Maxi-

mum Margin Segments in Speech. ICASSP, pages 937–940,

2007.

[5] J.S. Garofolo and et. al. Getting started with the DARPA

TIMIT CD-ROM: An acoustic phonetic continuous speech

database. National Institute of Standards and Technology

(NIST), Gaithersburgh, MD, 1988.

[6] T. Hastie and R. Tibshirani. Discriminant adaptive nearest

neighbor classification. IEEE Trans. PAMI, 18(6):607–616,

1996.

[7] A.K. Jain and R.C. Dubes. Algorithms for clustering data.

Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1988.

[8] P.K. Kuhl. Early language acquisition: cracking the speech

code. Nature Reviews Neuroscience, 5(11):831–843, 2004.

[9] Y. Qiao, N. Shimomura, and N. Minematsu. Unsupervised

Optimal Phoneme Segmentation: Objectives, Algorithm and

Comparisons. ICASSP (accepted), 2008.

[10] J. Rissanen. A Universal Prior for Integers and Estimation

by Minimum Description Length. The Annals of Statistics,

11(2):416–431, 1983.

[11] O. Scharenborg, M. Ernestus, and V. Wan. Segmentation of

speech: Child’s play? In Proc. of Interspeech, pages 1953–

1957, 2007.

[12] Y. Tohkura. A weighted cepstral distance measure for speech

recognition. IEEE Trans. ASSP, 35(10):1414–1422, 1987.

— 6 —


