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Abstract

The current speech recognition technology consists of acous-
tic models, language models, a pronunciation dictionary, and
a decoder. Computer-aided pronunciation training systems of-
ten use the acoustic matching module to compare a learner’s
utterance to its corresponding template stored in the systems.
The template is usually calculated through collecting native ut-
terances of that phrase and estimating its acoustic distribution.
On this framework, a learner’s utterance is acoustically com-
pared to its distribution and the notorious mismatch problem
happens more or less inevitably. The author claims that this
framework has a serious problem because learners don’t have to
imitate the utterances (voices) of a teacher acoustically. What
in a teacher’s utterances should be physically imitated by learn-
ers? This question was answered by the author through deriv-
ing mathematically and linguistically a speaker-invariant sound
pattern embedded in an utterance [1, 2]. Based on this answer,
a novel technique was realized for CALL system development
[3,4,5]. This paper describes the answer and the new technique
proposed in the previous studies and shows that the new tech-
nique can also provide a very motivating interface with learners.

1. Introduction

Developmental psychology tells that infants acquire spoken lan-
guage through imitating the utterances of their parents, called
vocal imitation [6]. But no infants try to imitate the voices. As
they have little phonemic awareness [7, 8], they cannot identify
a sound as phoneme although they can discriminate two dif-
ferent sounds very well. They cannot decode the speech into
sequence of phonemes or convert the phonemes into sounds. In
this situation, what in a father’s speech is acoustically imitated
by infants? Researchers claim that they firstly learn the holis-
tic sound pattern of the word [7, 8], called word Gestalt. Then,
what is the acoustic definition of that word Gestalt? If it carries
speaker information, many infants must try to produce their fa-
thers’ voices. This consideration indicates that the word Gestalt
has to be speaker-invariant. But what is that acoustically? I
asked this question to many researchers in some conferences on
infant study [9] but no researchers gave me a definite answer. If
the word Gestalt could be defined acoustically, I’'m wondering
whether it might be something like the linguistic skeleton.

No infants imitate the voices but myna birds imitate sounds
of cars, doors, and animals as well as human voices. Hearing a
very adept myna bird say something, one can guess its keeper
[10]. Hearing a very good child say something, however, it is
impossible to guess its keeper. If one trains a myna bird to be
a better imitator, the bird’s voice and the target sound will be
acoustically and directly compared and, to reduce the differ-
ence, another training method will be examined. Most of the
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Figure 1: The tallest man (7.9ft) and the shortest adult (2.4ft)

Figure 2: /aiueo/s produced by a tall speaker and a short speaker

CALL systems acoustically compare an input utterance to the
distribution estimated from its corresponding native utterances.
This fact claims that the systems assume that learners are myna
birds to the distributions calculated from native utterances. Is
this assumption correct and pedagogically-sound enough?

Figure 1 shows a picture of the tallest man and the shortest
adult in the world. Figure 2 shows two /aiueo/s generated by a
pseudo-speaker as tall as the tallest man and a pseudo-speaker
as short as the shortest adult. It is very easy to perceive that
the two utterances carry an equivalent linguistic content and it
is the case even for young children. Considering their weak
phonemic awareness, the equivalence perception is not based
on string-based (symbol-based) comparison between the utter-
ances but based on Gestalt perception. It should be noted that
the Gestalt-based equivalence perception does not seem to re-
quire sound-to-phoneme (symbol) conversion. But the question
here is what is the acoustic definition of the speaker-invariant
patterns embedded in the two utterances in Figure 2.

The question I'm addressing is one of the classical but still
unsolved questions in speech science, which is variability of
speech acoustics and invariance of speech perception [11]. By
considering a very good similarity between language and mu-
sic, I proposed a novel answer [1, 2]. Some people can identity
individual tones in a given melody as syllable names. This iden-
tification is done independently of the key of that melody. If a
melody is transcribed as sequence of syllable names such as
So-Mi-So-Do, then, its transposed version into any key is also
transcribed as So-Mi-So-Do. It is interesting that the listeners
perceive the internal and silent voice of “Mi” for acoustically
different tones, for example. This key-invariant perception is
known to owe much to relative pitch perception. In [1, 2], rel-
ative timbre perception was hypothesized and examined. Based
on this hypothesis, the speaker-invariant pattern was mathemat-
ically derived and used for CALL application [3, 4, 5].
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Figure 3: Dynamic changes of pitch in CDEFG and those of timbre in /aiueo/ with the Japanese vowel chart
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Figure 5: Three musical scales of Major, Minor, and Arabic

2. Speaker-invariant representation
2.1. Key-invariant representation of melody

A musical piece (C-major) and its transposed version (G-major)
are shown in Figure 4. Hearing them, it is usually easy to per-
ceive that they carry an equivalent melodic content although
they are acoustically different. People with relative pitch (RP)
who can verbalize a melody contour perceive the same string of
syllable names, i.e. So-Mo-So-Do La-Do-Do-So, in the above
two pieces. People with absolute pitch (AP) can easily tran-
scribe the first piece, using pitch names, as G-E-G-C A-C-C-G
and the second one as D-B-D-G E-G-G-D. If they have very
strong AP, they come to have some difficulty in perceiving the
equivalence [12]. They have to transform the first symbol se-
quence into the second consciously. A large number of people
cannot transcribe a melody. They have RP but cannot verbalize.
It is true, however, that they can easily perceive the equivalence
between the two pieces even with no tonal symbols. In psychol-
ogy, what they perceive is regarded as melody Gestalt.

As described above, developmental psychology claims that
young children perceive the holistic and equivalent sound pat-
tern embedded in the two utterances in Figure 2, called word
Gestalt. It also claims that this perception requires no phonemic
or phonetic symbols. In [1, 2], the Gestalt was mathematically
introduced and its experimental validity was examined.

Melody consists of a dynamically changing pattern of pitch.
Figure 3 shows a pitch contour of CDEFG. Between this and its
transposed version, I can derive easily the acoustic definition of
the key-invariant tonal pattern. If a melody is represented as
a sequence of local and relative pitch changes, namely, AFy,
(=Fo;—F0._1), the sequence becomes key-invariant. In West-
ern music, an octave is divided into 12 semi-tone intervals and a
musical scale is composed of 8 tones, which have 5 whole-tone
intervals (Ws) and 2 semi-tone ones (Ss). It is important that the
tones’ relative arrangement is invariant with key. This is why a
AFy, sequence is key-invariant. Further, RP people who can
carry out key-invariant transcription of a melody use this invari-
ant arrangement [13]. Figure 5 shows two well-known musical
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Figure 6: Accented pronunciations of American English [14]

scales, Major and Minor, and a very local scale, Arabic. If a
Western melody is played in the Arabic scale, RP people are
expected to have difficulty in transcribing the melody as a syl-
lable name sequence. This expectation is very valid when they
are unfamiliar with the Arabic tonal arrangement.

2.2. Speaker-invariant representation of speech

If only resonant linguistic sounds are considered, speech is a
dynamically changing pattern of timbre. Figure 3 also shows a
timbre contour of /aiueo/. Can the timbre contour be speaker-
invariant like melody? Transposition of melody translates the
pitch contour but the shape of the contour is not altered. The
Japanese F/F»-based vowel chart is also shown in Figure 3. It
seems that the male vowel system is translated to fit to the fe-
male version in which the vowel arrangement is not changed.
It is regarded as multi-dimensional transposition. As shown in
Figure 5, a different tonal arrangement gives us a different color
of music. Similarly, as shown in Figure 6, a different timbre
arrangement gives us a different color of language, namely, re-
gional accents. In both cases, not the sounds themselves but the
sound system may play a critical role in invariant perception.
If this vowel system invariance is always satisfied with any
kind of the non-linguistic factors, the timbre contour or trajec-
tory can be considered as speaker-invariant representation, i.e.
word Gestalt. As explained shortly, however, this simple deriva-
tion does not work at all mathematically and experimentally.

2.3. Directional dependence of cepstrum on speakers

Difference of the vocal tract length changes formant frequen-
cies. If it becomes shorter or longer, they will become higher or
lower, respectively. This change is often modeled as frequency
warping of a spectrum envelope in the spectral domain and as
multiplying matrix A (={as;}) in the cepstral domain [15].
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Using ¢’=Ac, it is possible to convert a speech sample of a male
adult into that of a boy. I carried out a geometrical analysis of
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Figure 7: Rotation of cepstrum vectors and their As

Figure 8: Distribution-based structuralization

this matrix and found that A has a very strong function in ro-
tating cepstrum vectors although A is not a complete rotation
matrix [16]. In other words, A approximately satisfies the con-
ditions of rotation matrix; A* A=AA*=T and |A| = 1.

Figure 2 shows two speech samples of /aiueo/; the original
(male adult) and its warped version (boy) using A. Figure 7
shows some results of analyzing the relation between rotation
angles and the degree of body height change through warping.
Using different values of «, an /aiuoe/ utterance of a male adult
was warped into that of speakers of different heights. The origi-
nal height was 167 cm and the height was changed into 50 cm to
350 cm. From these utterances, four fixed points were detected;
the central transition points of /a/ to /i/, /i/ to /u/, /u/ to /e/, and
/el to /o/. The /a/ to /i/ transition points are shown in Figure 2.
I can say that cepstrum rotation and A cepstrum rotation are
very similar and that a father’s direction and his son’s direction
are almost orthogonal. Based on this mathematical and experi-
mental fact, [ claim that the timbre contour or trajectory is not a
good answer to the question of “What is the acoustic definition
of speaker-invariant word Gestalt?”” It should be noted that pitch
rotation is impossible because pitch is one-dimensional. Since
timbre is multi-dimensional, its rotation is possible.

2.4. Robust and structural invariance in speech

If matrix A is a complete rotation matrix, speaker-invariant fea-
tures can be obtained as follows. A speech stream is converted
into a sequence of IV cepstrum vectors. If every distance is cal-
culated between any pair of the N cepstrums, which provides
an N x N distance matrix, the matrix is invariant. In the cepstral
domain, a difference in microphones or lines is represented as
addition of another static vector b, ¢’=c+b. And it is very clear
that the matrix is also invariant with any kind of b. It seems
that the distance matrix can be a good candidate to the acoustic
definition of word Gestalt but I have to note that matrix A is not
a complete rotation matrix. I have to say that the point-based
distance matrix is easily modified by a difference in speakers.
Is there a good method to make the distance matrix invari-
ant? The answer is to calculate the matrix as distribution-based
matrix. Figure 8 shows a timbre contour in a cepstrum space.
The contour is converted into a sequence of distributions, from
which a distance matrix is extracted. It should be noted that
distance is calculated also from temporally distant events. I can
guarantee mathematically that this holistic matrix is invariant
with any kind of 1-to-1 linear or non-linear transform [17].
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Figure 10: Jakobson’s structure of the French vowels [18]

In Figure 9, there are two spaces, one of which is mapped
into the other by a linear or non-linear transform. Point (z, y) in
space A is mapped uniquely on (u,v) in B, where z=f(u, v)
and y=g(u,v). Bhattacharyya distance between two distribu-
tions is invariant with any kind of linear or non-linear transform.

BD(p1,p2) = —log# Vp1(z,y)p2(z, y)dzdy
~10g ff /17 0 g DT (s ), 9, 0) e
= —logﬂ Va1 (u,v)g2(u, v)dudv = BD(q1, q2),

where J=J(u,v), Jacobian. The distribution-based distance
matrix is robustly invariant. Since a distance matrix determines
its own shape of the geometrical structure, I can call this matrix-
based representation a structural representation of speech.

2.5. Linguistic, psychological, and technical verifications

Phonetics discusses the absolute and local values of language
sounds, i.e. “elements first!”. Phonology discusses their relative
and holistic values, i.e. “system first!”. The proposed structural
representation is regarded as mathematical and physical imple-
mentation of Jakobson’s structural phonology (See Figure 10).
In his case, he mentally ignored non-linguistic factors in speech
and built a speaker-invariant structure of a language. In my case,
however, I removed the factors purely mathematically and ex-
tracted a speaker-invariant structure from an utterance.

A previous study of speech perception [19] showed that
isolated vowel sounds generated by pseudo-giants and pseudo-
fairies like the two male adults in Figure 1 were very difficult to
identify. This is because their vowels are out of the range of the
vowels of normal-sized speakers, shown in Figure 3. When they
produced meaningless sequences of morae, which contained
timbre dynamics, however, subjects became reasonably able to
identify the vowels in the utterances [19]. It should be noted
that the utterances contained no semantic and syntactic infor-
mation. This performance is similar to that of RP people who
can verbalize a melody as syllable name sequence. They can-
not identify an isolated tone at all but can transcribe a melody.
Their transcription is based on the key-invariant tonal arrange-
ment, not based on tone-to-symbol conversion. Utterances can
be transcribed not based on sound-to-symbol conversion.
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Figure 11: From the Japanized structure to the American structure

The speaker-invariant structural representation of speech
was applied in isolated word recognition [20, 21], where a word
was defined artificially as a sequence of five Japanese vowels
such as /eoiau/. The recognition performance of the proposed
method could not drop with the change of body size. But the
performance of word-HMMs had to drop drastically. For exam-
ple, a structure-based recognizer showed 80% with extremely
small speakers but an HMM-based recognizer showed 1%. The
former recognizer cannot identify an isolated sound at all.

3. Use of the structure for CALL

Infants and learners don’t have to imitate the voices of a par-
ent and a teacher, respectively. What they have to imitate is
the speaker-invariant sound system of the target language, em-
bedded in utterances. Based on this principle, a structure-based
vowel training system was built [3, 4, 5]. Here, a vowel struc-
ture was extracted from a set of words which contained a full
set of English monophthongs such as beat, bit, bed, bat, etc.

3.1. Development of the vowel system and its visualization

Various pronunciations of the vowels were simulated by a
Japanese speaker who can speak American English (AE) well.
Each of the 11 AE vowels was recorded only once as /bVt/
and each of the 5 Japanese ones was done five times as /bVto/.
Using the vowel segments of these data, various vowel struc-
tures were calculated. For example, the completely Japanized
English structure can be obtained by substituting Japanese /a/
sounds for /a, &, a, 9, 2/ and the other Japanese vowels properly
for the other AE vowels. Partly-American and partly-Japanese
vowel structures can be generated by changing the substitution
pattern. Figure 11 shows the completely Japanized structure,
a partly-American and partly-Japanese structure, and the AE
structure. Here, hierarchical clustering was used to visualize
the vowel structures (distance matrices). The second tree was
obtained from the first one by correcting /a, &, a, 9, a/.

Table 1: Vowel substitution table
Japanese vowels « English vowels

a a, A, &, 99
i i, 1

u u, v

e £

) o)

Table 2: 8 patterns of the vowel substitution
& A 9 2 1 i v u :

Figure 12: Distance calculation after shift and rotation

3.2. Classification of learners based on their pronunciations

A learner was visualized as tree diagram, which was generated
by a full set of Bhattacharyya distances between any two of the
vowels. If distance measure between two vowel matrices, i.e,
two learners, is adequately defined, then, it will be possible to
calculate a full set of distances between any two of the learners.
This means that the learners can be classified purely based on
their vowel structures, with no undesired effects from age, gen-
der, speaker, microphone, etc. This section shows that, with the
proposed technique, the learner classification worked very well.
In the experiment, various vowel structures were used and they
were obtained from twelve Japanese returnees from US.

3.2.1. Speech material used in the experiment

Six male and six female high school or university students, who
were returnees from US, joined the recording. The 11 AE vow-
els and the 5 Japanese vowels were recorded once as /bVt/ and
five times as /bVto/, respectively. This is because five different
American vowels, at most, was replaced by a Japanese vowel.
Considering Japanese habits of producing AE vowels, the
substitution table was prepared, shown as Table 1. Using this ta-
ble, 8 patterns of the vowel substitution were obtained and listed
in Table 2. P1 and P8 correspond to the completely Japanized
English and the good American English pronunciations, respec-
tively. P2 to P7 are half-Japanese and half-American pronunci-
ations. 8 different vowel structures were prepared per speaker
and 96 vowel structures all together. The aim of the experiment
was to examine whether the 96 structures could be classified
based on the vowel structures, not based on gender or speaker.

3.2.2. Matrix-to-matrix distance measure

Suppose that two vowel structures, S and 7', are given as two
distance matrices. Then, structure-to-structure distance is ob-
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Figure 14: Classification of the 96 vowel structures based on the substance-based comparison (D2)

tained after shifting and rotating a structure so that the two can
be overlapped the best, shown in Figure 12. The distance is cal-
culated as the minimum of the total distance between the cor-
responding two points after shift and rotation. In [3], it was
shown that the minimum distance, D1, can be approximately
calculated as euclidean distance between the two distance ma-
trices, where the upper-triangle elements form a vector;

,T) = \/ﬁ Zi<j(sij - Ti)?, @)

where S;; is (Z,7) element of matrix S and M is the number
of the vowels. D; can be regarded as summation of differences
of vowel contrasts between the two. For example, distance be-
tween /a/ and /¢/ is compared between the two structures. In
the conventional acoustic matching framework such as DTW
and HMM, however, vowel substance /a/ of a learner and that
of another was directly compared. In this framework, distance
between two vowel structures, Ds, is formulated as follows.

Ds(S,T) = /37 X2 BD(v,v]), (©)
where v is vowel 7 of structure S.

3.2.3. Results of classifying the 96 simulated learners

Figures 13 and 14 show the results of classifying the 96 vowel
structures in two different ways. Numbers and alphabets rep-
resent the vowel patterns (1 to 8) and the speakers (A to L),
respectively. It is clearly shown that contrast-based comparison
led to pronunciation classification and substance-based compar-
ison led to speaker classification. In [5], another tree was built
manually by a phonetician and a good similarity between the
manual tree and the automatic tree of Figure 13 was verified.

3.3. Which vowel to correct at first in your case?

3.3.1. The vowel generating the largest structural distortion

Matrix-to-matrix distance was derived as ID; which indicates
the total distortion between the two structures. It can be de-
composed into components of the individual vowels. The local

structural distortion caused by vowel v, d(v), was defined as

d(v) = \/ 17 011 (Sus — Tog)2. 3)

S and T correspond to a learner matrix and a teacher’s one. The
vowel giving the largest d(v) should be corrected at first.

3.3.2. Estimation of the order of vowel correction

The 96 vowel structures were divided into 8 patterns (P1 to
P8) and 12 structures (A to L) of each pattern were averaged
to define the averaged vowel structure for each pattern. PS is
regarded as distance matrix of a teacher and there were 7 learn-
ers, one of which had the complete Japanese accent (P1) and
the others had partly Japanese accented pronunciations. Us-
ing Equation 3, the order of vowel correction was estimated for
each learner. It was examined whether the replaced AE vowels
(see Table 2) were ranked as higher or not.

The estimated orders for P1 to P6 are shown in Figure 15.
Bars represent d(v) and gray bars mean that of the replaced
vowels. It can be said that the replaced vowels are ranked higher
with some exceptions. In several figures, the replaced vowels of
/v, u, i/ are ranked lower than unreplaced vowels. This result is
considered reasonable because American vowels of /v, u, i/ are
known to closer to Japanese vowels of /u, u:, i:/.

4. Use of the structure to motivate learners
4.1. Selection of favorite teachers

The speaker-invariant structural representation of speech is used
to build a very motivating user-interface for CALL systems.
With the proposed technique, a learner’s pronunciation can be
compared to a specific teacher’s pronunciation. For example,
the pronunciation of the tallest man can be compared to that
of the shortest adult without any mismatch. Figure 16 shows
a window of teacher selection, where learners can select their
favorite teachers. In the current demonstration system, the pro-
nunciations of world-famous phoneticians are stored. If those of
movie stars are available, learners can select them if they want.
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Figure 15: The estimated order of vowel correction

The Kashiwa campus of The University of Tokyo holds an
open-campus activity once a year. Every lab. shows demonstra-
tions and my lab. carries out “Pronunciation Clinic” (PC) every
year. For the last three years, the total number of the visitors
to the open-campus were around 3,800, 4,500, and 2,700. The
small number of the latest year was due to rains. In contrast, the
total number of people who joined PC was about 200, 250, and
250. Posters of PC with Figure 16 were put on walls. I believe
that the interface successfully attracted interests of the visitors.

4.2. Overview of all the learners’ development in a class

Figure 17 shows the changes of 18 learners before and after a
1-week training. These illustrations are obtained with multi-
dimensional scaling and five teachers are also plotted. The
learners’ efforts are clearly visualized and I found that this kind
of image overviewing the class motivated the learners very well.

5. Conclusions

This paper describes the theoretical background of the structural
representation of speech and shows its application to CALL.
The new representation claims that infants and learners should
acquire the speaker-invariant sound system embedded in utter-
ances of parents and teachers. With the new representation,
some new techniques and new interfaces are created. I hope
that the new representation helps learners improving their pro-
nunciation of the target language pleasantly and successfully.
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