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Abstract 
This paper presents a method of voiced/unvoiced (V/Uv) 

classification of noisy speech signals. Empirical mode 
decomposition (EMD), a newly developed tool to analyze 
nonlinear and non-stationary signals is used to filter the 
additive noise with the speech signal. The normalized 
autocorrelation of the filtered speech signal is computed to 
enhance the periodicity if any. It is considered that the voiced 
speech signal is periodically correlated and the unvoiced 
signal is not. A statistical model of determining periodic 
correlation is used to differentiate voiced and unvoiced 
speech with low SNR. The experimental results show that the 
use of EMD improves the classification performance and the 
overall efficiency is noticeable as compared to other existing 
algorithms.         

Index Terms: empirical mode decomposition, normalized 
autocorrelation, periodic correlation, voiced/unvoiced speech 

1. Introduction 
Reliable classification of short time speech signal into voiced 
and unvoiced is a crucial preprocessing step in many speech 
processing applications and is essential in most analysis and 
synthesis system. For example: different strategy could be 
adopted for voiced and unvoiced parts in speech enhancement 
using spectral subtraction. The essence of classification is to 
determine whether the speech production system involves the 
vibration of the vocal cords [1]. The discrimination problem 
is an important one and has been worked on extensively 
during the last three decades [2].  

The discrimination can effectively be performed using a 
single feature or parameter which is closely associated with 
the voicing and non-voicing activities of speech signal. Many 
algorithms have been reported for solving the detection 
problem [3] – [7]. In [3], Gaussian mixture model with 
cepstrum coefficients features is proposed for robust V/Uv 
classification. A higher order statistics (HOS) based method 
is proposed in [4] for V/Uv detection and pitch estimation 
simultaneously. The matching pursuit algorithm is used in [5] 
with Gabor decomposition. The wavelet transform is 
proposed in pitch and V/Uv detection in [6]. A statistical 
model applied in autocorrelation domain is also reported in 
[7]. In most of the existing algorithms are not so much noise 
robust and also the intensive threshold and training data are 
required for classification. Such requirements are troublesome 
for the use in application domain.  

The proposed method is noise robust and based on the 
statistical model for periodicity detection in speech signal 
without any training requirement. To reduce the effect of 
noise on speech signal, a data adaptive time domain filtering 
is proposed using newly developed empirical mode 

decomposition method [8]. Although speech signal is non-
stationary in nature, Fourier based frequency domain filtering 
assumes that it is piecewise stationary. The speech 
decomposition is performed by fitting some predefined bases 
without satisfying its non-stationary nature. Whereas, EMD 
based approach decompose the speech signal as non-
stationary time series and hence better performance in noise 
filtering. 

A method for determining whether an observed time 
series contains a periodically correlated sequence is employed 
here. It is based on the statistical tests for the coherence 
between spectral components for the presence of a 
periodically correlated covariance structure in a time series 
[9]. The autocorrelation function (ACF) makes the periodicity 
more prominent if any. The proposed periodic correlation 
model is applied in the autocorrelation domain rather than 
original time domain of the speech signal. The periodicity 
detection method is implemented in spectral domain to 
classify the speech segment into voiced or unvoiced one 
based on that it contains periodic correlated sequence or not 
respectively. 

2. Noise filtering using EMD 
The principle of EMD technique is to decompose any signal 
s(t) into a set of band-limited functions Cn(t), which are zero 
mean oscillating components, simply called the IMFs. Each 
IMF satisfies two basic conditions: (i) in the whole data set 
the number of extrema and the number of zero crossings must 
be same or differ at most by one, (ii) at any point, the mean 
value of the envelope defined by the local maxima and the 
envelope defined by the local minima is zero [8]. The first 
condition is similar to the narrow-band requirement for a 
Gaussian process and the second condition is a local 
requirement induced from the global one, and is necessary to 
ensure that the instantaneous frequency will not have 
redundant fluctuations as induced by asymmetric waveforms. 
With this definition, the IMF in each cycle, defined by the 
zero crossings, involves only one mode of oscillation, no 
complex riding waves are allowed [8]. IMF is not restricted to 
a narrow-band signal; it can be both amplitude and frequency 
modulated, in fact it can be non-stationary. 

The idea of finding the IMFs relies on subtracting the 
highest oscillating components from the data with a step by 
step process. Although a mathematical model has not been 
developed yet, different methods for computing EMD have 
been proposed after its introduction [10, 11]. The very first 
algorithm is called the sifting process. The sifting process is 
simple and elegant.  It includes the following steps: 
1. Identify the extrema (maxima and minima) of s(t) 
2. Generate the upper and lower envelopes (u(t) and l(t)) by 

connecting the maxima and minima points by cubic 
spline interpolation 
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3. Determine the local mean m1(t)=[u(t)+l(t)]/2 
4. Since IMF should have zero local mean, subtract out 

m1(t) from s(t) to get h1(t) 
5. Check whether h1(t) is an IMF or not 
6. If not, use h1(t) as the new data and repeat steps 1 to 6 

until ending up with an IMF 

Once the first IMF h1(t) is derived, it is defined as 
C1(t)=h1(t), which is the smallest temporal scale in s(t). To 
compute the remaining IMFs, C1(t) is subtracted from the 
original data to get the residue signal r1(t): )()()( 11 tCtstr �� . 
The residue now contains the information about the 
components of longer periods. The sifting process will be 
continued until the final residue is a constant, a monotonic 
function, or a function with only one maxima and one minima 
from which no more IMF can be derived [12]. The subsequent 
IMFs and the residues are computed as: 

)()()(),...,()()( 1221 trtCtrtrtCtr BBB ���� �      (1) 

At the end of the decomposition, the data s(t) will be 
represented as a sum of n IMF signals plus a residue signal, 
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A noisy speech signal and some selected IMF components 
are shown in Figure 1. It can be observed that higher order 
IMFs contain lower frequency oscillations than that of lower 
order IMFs. This is reasonable, since sifting process is based 
on the idea of subtracting the component with the longest 
period from the data till an IMF is obtained. Therefore the 
first IMF will have the highest oscillating components; the 
components with the highest frequencies. Consequently, the 
higher the order of the IMF, the lower its frequency content 
will be.  
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Figure 1: The illustration of EMD. A noisy speech signal at 10 
dB SNR and its first 6 IMFs out of 13. 

2.1. Instantaneous frequency 
Instantaneous frequency (IF) represents signal’s frequency at 
any time instance and it is defined as the rate of change of the 
phase angle at the instant of the “analytic” version of the 
signal. Every IMF is a real valued signal. The discrete Hilbert 
transform (HT) denoted by Hd[.] is used to compute the 
analytic signal for an IMF. Then the analytic version of the 

bth IMF )(tCb
is defined as: 

 )()()]([)()( tj
bbdbb

betatCjHtCtz ����                        (3) 

where ab(t) and �b(t) are instantaneous amplitude and phase 
respectively of the bth IMF. The analytic signal is 
advantageous in determining the instantaneous quantities such 
as energy, phase and frequency. The discrete-time IF of bth 
IMF is then given as the derivative of the phase �b(t) 
calculated at t i.e. 
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tdtf b
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where )(~ tb� represents the unwrapped version of instantaneous 

phase �b(t). The derivative in Eq. (4), is evaluated at discrete 
instant of t. It should be noted that such derivative introduces 
the abrupt fluctuations of IF and hence nonlinear smoothing is 
required. Here, the moving average smoothing filtering is 
used to remove such fluctuations. The filtering scheme 
improves the effectiveness of computing IF using discrete 
derivative. The concept of IF is physically meaningful only 
when applied to mono-component signals. In order to apply 
the concept of IF to arbitrary signals it is necessary to 
decompose the signal into a series of mono-component 
contributions. In the recent approaches [12], EMD technique 
decomposes a time domain signal into a series of mono-
component IMFs. Then the IF derived for each component 
provides the meaningful physical information. 

2.2. Noise filtering 
Although the IMFs may have frequency overlaps but at any 
time instant, the instantaneous frequencies represented by 
each IMF are different. This phenomenon can be well 
understood in Figure 2 which shows the instantaneous 
frequencies of the first 6 IMFs. Therefore, EMD is an 
effective decomposition of non-linear and non-stationary 
signals in terms of their local frequency characteristics.     
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Figure 2: Instantaneous Frequencies of the first 6 IMFs. 
 

With these powerful characteristics, recent studies have 
shown that it is possible to successfully identify and remove a 
significant amount of the noise components from the IMFs of 
a noisy speech. Although all IMFs contain energy from both 
the original speech and the noise, the amount of the energy 
distribution is different. Since speech signals are mainly 
concentrated in the low and mid frequency bands, the high 
frequency noise components dominate the first IMFs. For 
instance, in case of white noise, most of the noise components 
are centered on the first two IMFs, while the speech signals 
dominate between 3rd and 6th IMFs, as can be observed in 
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Figure 1. Therefore, EMD makes it possible to some extent 
separate the high frequency noise from the major speech 
components. The instantaneous frequency vector is 
normalized between 0 and 0.50 to align with the Nyquist 
frequency. Then the IMFs with higher frequencies (>1.5kHz) 
are discarded. Thus most of the high frequency noise will be 
filtered out. The rest of the IMFs (including residue) is 
summed up to reconstruct the speech signal with less noise 
which is termed here as pre-filtered noisy speech (PFNS) 
what will be processed to detect the periodicity. 

3. Detecting periodicity 
Periodically correlated (PC) processes are non-stationary but 
possess many of the properties of stationary processes. Hence, 
the attempt to apply the model of PC processes is suitable in 
determining the presence of periodicity in the speech signal. 
The PC processes exhibit a nature of cyclostationarity which 
has led to its use in many signal processing applications [13]. 
In frequency domain the standard tool for detecting the 
periodicity is the periodogram defined as 
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where FN(�j) is the discrete Fourier transform and �j = j/N, 
j=1,…,N are the frequencies.  

3.1. Statistical model 
In many PC processes the periodogram fails to detect the 
periodicity whereas, the sample coherence can correctly 
detect that [9]. The sample coherence is defined as  
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where 0<p, q
N, N is the sample length and M is the 
smoothness coefficient. Sample coherence takes only real 
values between 0 and 1. 

Two tools – coherent and incoherent statistics are 
proposed in [9] for determining the presence of periodic 
correlation. The former one is defined as 2|),,0(| M�	 , i.e. 
the sample coherence given by Eq. (6), evaluated for N = M, 
whereas the later one is given by 
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where L = [N-1-�]/M] and � = |q-p|. Since both statistics 
depend on the differences between frequencies, the plots 
against to �  (or ��) are the most indicative. The statistics are 
plotted only in the interval (0, N/2), because the values in the 
interval (N/2, N) are the mirror image of the values in the 
former one. Peaks at points ��, �2�, �3� etc. indicate the 
presence of periodic correlation. The coherent and incoherent 
statistics are, in general, much better than the periodogram 
but it is also still fails to detect some PC processes.  

To enhance the moderate efficiency of coherent and 
incoherent statistics, the measure of fitness (MoF) statistics is 
proposed in based on the bootstrap methodology [14] and is 
defined by 
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� is the confidence level and c� is the estimator of the critical 
value using moving blocks bootstrap procedure. The MoF 
statistics �(.) takes real values in the interval [0, 1] and due to 
the symmetry is plotted only in the interval (0, N/2). The 
peaks at points ��, �2�, �3� etc. indicate the presence of 
periodic correlation. What distinguishes the MoF statistics 
from the former two is the summation scheme in which only 
the significant of sample coherence are used. It is not the 
values of the sample coherence that is important but its value 
relative to values at other frequencies. Thus the MoF statistic 
detects the periodic correlation even for the processes 
exhibiting extreme volatility.      

3.2. Autocorrelation based implementation  
The proposed statistical model is implemented on the 
normalized autocorrelation (NACF) of the speech signal 
rather than in time domain. The noisy speech pre-filtered to 
reduce the noise effect hence obtaining the PFNS signal �(n), 
0
n
N-1 is used in periodicity detection.                  

The NACF produces better results in V/Uv detection than 
the simple autocorrelation function as the peaks are more 
prominent and the less affected by the rapid variation in the 
signal amplitude. In this paper, the NACF of the PFNS signal 
�(n), 0
n
N-1 is used to detect the presence of periodicity 
and is computed as 

�
�

�

��
1

10

)()(1)(
N

nk

knnkNACF ��
��

,                (10) 

where 

�
��

�

�
KNk

kn
k n)(2�� , 0 
 k 
 K-1.                                   (11) 

Even with the aforementioned pre-processing, the 
periodicity determination with NACF may give erroneous 
results under strong noisy condition due to the presence of 
spurious peaks obscuring the actual prominent peaks and also 
due to the inherent shortcoming introduced with the NACF. 
The NACF functions of noisy voiced speech signal and its 
pre-filtered one are shown in Figure 3. It is observed that the 
PFNS produces more prominent peaks in the NACF domain. 
The coherent, incoherent and MoF statistics of the NACF of 
voiced speech (PFNS) are illustrated in Figure 4.   
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Figure 3: NACF of noisy speech signal (upper) and of PFNS 
signal (lower one). 
 
It is observed that only MoF statistic can really detect the 
presence of periodicity of the voiced speech signal. The 
presence of peaks is confirmed using robust outlier detection 
technique [15]. The presence of peaks with constant duration 
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proves that the speech signal contains PC process and hence it 
is a voiced segment and unvoiced otherwise.     

50 100 150 200 250
0

0.5

1

MoF Statistic

Delay parameter

Mo
F v

alu
e

50 100 150 200
0

0.05

0.1

Delay parameter

Co
h. 

va
lue Coherent statistic

50 100 150 200 250
0

0.05

0.1

0.15

Delay parameter

Inc
oh

. v
alu

e Incoherent statistic

 
Figure 4: Different statistics of NACF of voiced speech signal. 

4. Experimental results and discussion 
The performance of the proposed method is evaluated by 
using speech data taken from TIMIT database. The speech 
material used in this experiment is re-sampled to 20 kHz and 
segmented into frames of length 30ms with 10ms shifting. 16 
bit resolution. Approximately 2010 frames including male 
and female speech are used. Each frame is accurately labeled 
for voiced and unvoiced. The error rates are compared for two 
criterions – with EMD based noise filtering (nfEMD) and 
without noise filtering (WnF) for different noise levels. The 
white Gaussian noise is added to obtain different levels of 
segmental SNR (SSNR). Voiced – to – unvoiced (V-Uv) and 
unvoiced – to – voiced (Uv-V) error rates denote the accuracy 
in correctly classifying voiced/unvoiced speech frames. A 
Uv-V error occurs when an unvoiced frame is classified 
erroneously as voiced, and a V-Uv error occurs a voiced 
frame is detected as unvoiced. The overall error rate is 
obtained by summing up the two error factors. The 
performance of the proposed method for different SSNRs is 
shown in Table 1: 

Table 1: Performance of the proposed method with 
nfEMD and WnF as a function of different SSNR 

nfEMD (%) WnF (%) SSNR 
(dB) V-Uv Uv-V Overall V-Uv Uv-V Overall 

Clean 0.65 0.33 0.98 0.69 0.38 1.07 
10 0.74 0.68 1.42 1.07 0.85 1.92 
0 2.92 1.31 4.23 4.34 3.29 7.63 
-5 4.31 2.63 6.94 6.47 4.55 11.02 
-10 5.43 3.98 9.41 8.02 7.11 15.13 

 
The performance is evaluated under noisy conditions for a 

wide range of segmental SNRs. The overall classification 
accuracy with EMD based filtering method is always better 
than the existing reported algorithms [2]-[5]. With cepstrum-
based modified algorithm [2], the overall error is reported as 
6.16% for 0dB SSNR and no result is produced for SSNR less 
than 0dB. Gaussian mixture model (GMM) with cepstral 
features is proposed in [3] with 8% error for 15dB SNR. In 
[4], higher order statistics (HOS) based method is employed 
in V/Uv classification for low SNR (up to 0dB) but no 
quantitative result is reported. Gabor atomic decomposition 
method is proposed in [5] with 16% error rate for 5dB SNR 
speech. Based on the above mentioned performances of the 
existing algorithms, the proposed method proves its 
superiority in V/Uv classification of noisy speech signals.                 

5. Conclusions 
An improved and reliable V/Uv classification algorithm is 
presented in this paper. The voiced speech signal is 
considered as a time series with periodically correlated 
process, and, the unvoiced signal does not contain any 
periodic correlation (PC). A statistical model for detecting the 
presence of PC is employed herewith. EMD based noise 
filtering method is proposed to increase the robustness of 
periodicity detection. The overall classification performance 
is noticeably improved even for low SNR without any 
threshold value and training data. The use of the proposed 
method in robust pitch detection is the future target.  
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