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ABSTRACT

Recently, a novel and structural representation of speech was pro-
posed [1, 2], where the inevitable acoustic variations caused by non-
linguistic factors are effectively removed from speech. This struc-
tural representation captures only microphone- and speaker-invariant
speech contrasts or dynamics and uses no absolute or static acous-
tic properties directly such as spectrums. In our previous study, the
new representation was applied to recognizing a sequence of iso-
lated vowels [3]. The structural models trained with a single speaker
outperformed the conventional HMMs trained with more than four
thousand speakers even in the case of noisy speech. We also ap-
plied the new models to recognizing utterances of connected vowels
[4]. In the current paper, a multiple stream structuralization method
is proposed to improve the performance of the structural recogni-
tion framework. The proposed method only with 8 training speakers
shows the very comparable performance to that of the conventional
4,130-speaker triphone-based HMMs.

Index Terms— speech recognition, robust invariance, the struc-
tural representation, multiple stream structuralization

1. INTRODUCTION

Every speech recognition system uses acoustic models based on pho-
netics, which observes acoustic events of speech directly and abso-
lutely. The observations, however, inevitably vary according to the
non-linguistic factors, such as age, gender, microphone, line, and
so on. These non-linguistic variations are noises for extracting lin-
guistic information from speech and, thus, the speaker-independent
HMMs can still have outlier speakers easily even though they are
trained with thousands of speakers. In contrast, humans, even chil-
dren, can communicate orally without experiences of hearing the
voices of thousands of speakers. We consider that this fact implies
that there exists a robust representation of speech which is nearly
invariant to the non-linguistic variations.

Apart from semantics, linguistics provides two definitions of the
phoneme [6]. 1) A phoneme is a class of sounds that are phoneti-
cally similar. 2) A phoneme is one element in the sound system of
a language having a characteristic set of interrelations with each of
the other elements in that system. These two definitions correspond
well to phonetics and phonology. The former discusses the absolute
values of linguistic sounds and the latter does their relational values.
It is clear that the HMMs are based on the first phonetic definition.
As far as the authors know, however, speech recognizers have never
been built only based on the second purely-phonological definition
except for our previous studies.

Recently, a novel acoustic representation of speech was pro-
posed, which is called the structural representation of speech [1].
It discards all the absolute properties of speech events because they
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inevitably transmit the non-linguistic information. The new repre-
sentation captures only speech contrasts or dynamics to form an ex-
ternal structure composed of the acoustic events. Here, the speech
contrasts are modeled in a distorted non-Euclidean space so that
they are invariant with the non-linguistic variations. The authors
already applied this new representation to speech recognition [3]. In
order to discuss its fundamental characteristics when dealing with
speech samples with high speaker dependency, a very simple task,
recognition of isolated vowel sequences, was adopted. The proposed
method trained only with a single speaker outperformed the conven-
tional HMMs trained using more than four thousand speakers, even
in the case of noisy speech. We also applied it to recognizing con-
tinuous speech, that is connected vowels [4]. It was shown that the
contrast-based invariant representation could remove the speaker dif-
ference effectively on one hand, but different words were sometimes
regarded as identical on the other hand. We called this undesirable
by-effect as problem of too strong invariance and it is very critical.

In order to solve this problem, this paper introduces a multiple
stream structuralization strategy as some constrains on the structural
acoustic matching framework. Experiments of recognizing con-
nected vowel utterances show that the proposed method only with 8
training speakers outperforms by far 260-speaker HMMs with CMN
and provides the very comparable performance to 4,130-speaker
HMMs with CMN.

2. STRUCTURAL REPRESENTATION OF SPEECH

2.1. Mathematical modeling of the non-linguistic variation

In speech recognition, three types of distortions or noises, addi-
tive, multiplicative and linear transformational, are often discussed.
Background noise is a typical example of additive noise, but this is
not inevitable because a speaker can move to a quiet room if needed.
Speech recognition in noisy environments is surely an important is-
sue, but, as we want to focus only on the inevitable distortions, ad-
ditive noise is not considered here. For example, CALL systems
need speaker-robust techniques more than noise-robust ones because
a self-training system can be used in a student’s private room [5].

The distortions caused by microphones and lines are examples
of multiplicative distortion. GMM-based speaker modeling assumes
that a part of speaker individuality is regarded as this type. These
distortions are inevitable because speech has to be produced by a
certain human and recorded by a certain device. If a speech event is
represented by cepstrum vector ¢, this type of distortion is addition
of vector b; ¢’ = ¢ + b.

Two speakers have different vocal tract shapes and two listeners
have different hearing characteristics. Mel scaling is just the average
pattern of the hearing characteristics. These are typical examples
of linear transformational distortion, which is naturally inevitable.
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Vocal tract length difference as well as hearing characteristics differ-
ence is often modeled as frequency warping of the spectrum. Any
monotonic frequency warping in the spectral domain can be con-
verted into multiplication of matrix A in the cepstral domain [7];
c = Ac

Although various distortion sources can be found in speech com-
munication, the total distortion due to the inevitable sources is sim-
ply modeled as ¢’ = Ac + b, i.e., affine transformation.

2.2. The structural representation of speech

In order to obtain a speaker invariant representation, we focused on a
structure composed of acoustic events. An n-point structure is deter-
mined uniquely by fixing the length of all the ,, C2 lines including the
diagonal ones. In other words, a geometrical structure is completely
represented as its distance matrix. Then, a necessary and sufficient
condition for the invariant structure is that distance between any two
points is invariant with any of a single affine transformation. This
condition seems to be mathematically impossible to satisfy because
affine transformation always distorts a structure unless it is of a spe-
cial form. However, it can be satisfied by distorting the space so that
the distance can be invariant.

Let us consider Bhattacharyya distance (BD), one of the distance
measures between two distributions p1 (z) and p2 (),
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It was mathematically proven that, when a linear or non-linear one-
to-one transformation is done on two distributions commonly, BD
is not changed before and after the transformation [8]. Considering
that the speaker conversion technique in speech synthesis applies an
adequate mapping function on source speech samples and that BD
cannot be changed by any of a linear or non-linear transformation,
we can regard this transform invariance as robust invariance. When
the two distributions are Gaussian, BD is formulated as follows,

BD(p1(z), p2())
(B
@

and in this case, BD is invariant to any common affine transforma-
tion. When acoustic events are described as cepstral distributions, an
affine invariant structure can be obtained by calculating a BD-based
distance matrix from cepstral distributions, and this structural repre-
sentation will be invariant to the inevitable non-linguistic variations.
Since any A and any b cannot change a structure, A is interpreted
as rotation of the structure, and b is interpreted as its shift. As told
above, the structural invariance is realized because BD calculation
distorts the space where the distributions are observed. Analysis of
this distorted space is done in [2] based on differential geometry.
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2.3. Acoustic matching between two structures

Acoustic matching between two n-point structures is done by shift-
ing (b) and rotating (A) a structure so that the two can be over-
lapped the best (see Figure 1). It was experimentally shown that
the minimum of the total distance of the corresponding two events
after the adaptation with b and A can be approximately calculated
as Euclidean distance between the two distance matrices, where the
upper-triangle elements form a vector [9],

D= 1/%;(%‘3‘—%)2, 3)
i<j
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Fig. 1. Acoustic matching after shift(b) and rotation(A)
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Fig. 2. Framework of the structural recognition

where p;; is (4, j) element of distance matrix P. It should be noted
that the acoustic matching score after the adaptation can be calcu-
lated without any absolute properties of the events and that without
formulating b and A explicitly. In other words, a structural acoustic
matching process implicitly includes an adaptation process but, for
the adaptation, no additional operations are required. Further, the
score can be calculated only with the two distance matrices repre-
senting the two sets of speech events structurally.

3. STRUCTURE-BASED SPEECH RECOGNITION

3.1. Framework of the structure-based recognition

The overall framework is shown in Figure 2. The left side of the
figure shows the procedure to extract a structure from an input ut-
terance. First, a cepstrum vector sequence was obtained from an
input utterance by acoustic analysis. Then, to convert the vector se-
quence to a distribution sequence, an HMM was trained with the
single vector sequence. Here, its transition probabilities were dis-
carded. Since all the distributions had to be estimated from a single
utterance, the MAP-based estimation was adopted. After that, a dis-
tance matrix was obtained by calculating BDs between any two of
the distributions. Finally, the upper-triangle elements of the distance
matrix were used as feature vector, called structure vector.

The right side of the figure is a reference template database.
Here, training samples of each word were converted into structures
and using them, a statistical structure model was trained for each
word. We adopted multivariate Gaussian distribution for the mod-
eling. Acoustic similarity between an input structure vector and a
statistical structure model was calculated as log likelihood. The tem-
plate showing the maximum log likelihood is the result of recogni-
tion.



3.2. A problem of too strong invariance

With any transformation, linear or non-linear, the structural invari-
ance is satisfied. This robust invariance is very effective to remove
the non-linguistic variations from speech acoustics. However, it will
be so strong that it should cause a critical problem, where a word and
another linguistically different word are treated as identical. This too
strong invariance should decrease the performance easily. Some con-
straints have to be introduced to restrict allowable transformations.

We focused on A, the rotation, and any A cannot change the
structure. What kind of A is required to be considered if we want
to model only the speech variations caused by the vocal tract length
difference. In [10], to model the effect of the vocal tract length, A is
formulated as follows.

1 « o? o
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where « is a warping parameter and |a| < 1. If « is sufficiently
small, o™ with high order n can be ignored, and matrix A has
non-zero elements only in and near the diagonal. If we adopt the
structural recognition framework of Figure 2 as it is, an utterance
and its transformed version with a completely different matrix from
Equation (4) are judged as identical. This is the critical problem and
we have to solve it.

If a structure in a space is projected into one of its sub-spaces,
the projected structure will naturally change through transformation.
By hypothesizing that the structural invariance is still satisfied in
the sub-space, geometrically speaking, the allowable transforma-
tions are restricted. This hypothesis is easily introduced into the
structural matching procedure by separating a cepstrum stream into
multiple independent sub-streams. Then, a structure is constructed
for each sub-stream, called multiple stream structuralization.

Why do we consider multiple stream structuralization? We have
a very good and strong reason. (¢’ , AcT)7 is a feature vector here,
where ¢ = (¢1, c2, --+ , cm)” is a cepstrum vector and Ac =
(Acr, Acay-o- ACM)T is its derivative. BD is invariant to any
common affine transformation;

d \_ [ An Ap c by
< AC/ ) - ( A21 A22 Ac + b2 (5)
All A12
A21 A22

If the feature vector is divided into two streams, ¢ and Ac, BD
is invariant in each sub-space.

where any of A = ( satisfies the invariance.

A116+ b1 (6)

AC, = AQQAC =+ bz (7)

In this case, A12 and A2; can be regarded as 0 in Equation (5), and
the rotation of structure is considered separately in each sub-space.
Dividing the feature vector into lower-dimensional sub-vectors as-
sumes more of the upper and lower triangular elements of A to be
zero. The multiple stream structuralization is regarded as good con-
straints on the allowable transformations of the structure.

If the proposed framework in Figure 2 is adopted as it is, it will
cause a problem of too strong invariance. To solve this, by trans-
lating the algebraic constrains of Equation (4) into its correspond-
ing geometrical constraints, they are introduced into the structural
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Table 1. Acoustic conditions for the analysis
sampling  16bit/ 16kHz
window 25 ms length and 4 ms shift
parameters Mel cepstrum (1 to 12) + A (1 to 12)
distribution 1-mixture Gaussian with a diagonal matrix

Input speech

| Mel-cepstrum analysis |

T
Cepstrum vector sequence

| HMM parameter estimation |

T
Distribution sequence

A4
| Parameter division |
| | | |
Y Y

| BD calc. | .. | BD calc. | | BD calc. | . | BD calc. |

Structure . . . Structure| Structure . . . Structure
vector vector vector vector
stream 1 stream K stream 1 stream K

Cepstrum streams Delta Cepstrum streams

Fig. 3. Structuralization with parameter division

speech recognition. In this paper, only uniform division is tentatively
examined. A feature vector is divided into a group of sub-vectors of
the same number of dimensions. The total distance between two
structures is calculated by accumulating structural sub-distances ob-
tained in the individual sub-spaces.

4. EXPERIMENTS

4.1. Experimental set-up

In order to investigate the fundamental characteristics of the pro-
posed framework, utterances of connected vowels were adopted as
recognition task. Vowel sounds are known to be much more depen-
dent on speakers acoustically than consonant sounds. The number
of vowels in an utterance was set to 5; V1-V2-V3-V4-V5, where
V;#V;. Since Japanese has 5 vowels, /aiueo/, Perplexity was 5Ps
(120). 8 male and 8 female adult speakers joined the recording and
5 utterances were recorded for each of the 120 words. The total
number of utterances was 9,600. The samples from 4 males and 4
females were used for training and the others for testing. In our pre-
vious study [3], only a single speaker was used for training. In this
work, however, as the required number of utterances was so large,
multiple speakers were used for training. The conditions for acous-
tic analysis and HMM parameter estimation are shown in Table 1.

4.2. Parameter division

The parameter division discussed in the previous section was carried
out after estimating the distribution sequence (Figure 3).

The left side of Figure 2 is replaced by Figure 3. If a speech
stream was treated as two separate sub-streams of cepstrum and its
A, two structures were always calculated. The parameter division
was further carried out to introduce additional constraints, where the
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Fig. 4. Recognition performance with constraints

number of division K was 1 (no division), 2, 3, 4, 6, and 12 for
each of the two streams. Finally, 2K distance matrices were ob-
tained from one utterance. In this experiment, the number of the
length of distribution sequences was set to 5, 10, 15, 20 and 25.
For comparison, two sets of speaker-independent HMMs were tested
for the same task; 260-speaker tied-state HMMs and 4,130-speaker
tied-mixture HMMs, both of which were distributed by Continuous
Speech Recognition Consortium in Japan [11] and were trained us-
ing MFCC with CMN applied. As language model, CFG allowing
only the testing 120 words was used.

Results with the parameter division are shown in Figure 4 as
function of the number of divisions. It can be seen that, with a larger
number of divisions, the better performance was obtained, and when
the number of distributions is larger than 20, the increase of distri-
butions can hardly improve the recognition rates. Considering that
an input utterance is connected five vowels, we can say that transient
segments have to be modeled as separate distributions from those
corresponding to stationary segments. The best performance was
95.3% in 12 divisions with 25 distributions. Figure 4 also shows the
results of the conventional HMMs; 82.1% and 97.4% for 260- and
4,130-speaker HMMs, respectively. These results indicate that the
proposed method only with 8 training speakers has much higher ac-
curacy and robustness compared to the 260-speaker HMMs and pro-
vides the very comparable performance to the 4,130-speaker HMMs.

5. CONCLUSIONS

This paper showed the results of applying the speaker-invariant and
structural representation of speech to recognizing utterances of con-
nected Japanese vowels. By translating the algebraic constraints
posed by transformation matrix A into its geometrical ones, a novel
technique of multiple stream structuralization was proposed. With
this technique and without any direct use of absolute speech features,
the statistical structure models trained only with 8 speakers achieved
95.3% as recognition rate. This performance is by far better than that
of 260-speaker HMMs and very comparable to that of 4,130-speaker
HMMs. Since the structural representation of an utterance is ob-
tained by extracting speech contrasts, the proposed method cannot
identify an isolated sound. Considering the current speech recogni-
tion technology is based on absolutely identifying individual sounds,
i.e. phonetics, the proposed framework, i.e. phonology, is com-
pletely opposite to the conventional framework. We consider that
this strategic difference correspond to reductionism vs. holism [8]
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and the integration of both the strategies is very interesting to us.

Although the current paper did not describe this at all, the fur-
ther performance improvement was already realized by another tech-
nique. One of the difficulties of the multiple stream structuraliza-
tion is high dimensionality of feature parameters, which not only in-
creases computational cost but also makes it difficult to train a clas-
sifier. Another new technique, called Random Discriminant Struc-
ture Analysis (RDSA) [12], which combines random feature selec-
tion, discriminative analysis, and classifier ensemble, successfully
reduced the number of dimensions and, at the same time, improved
the performance. The same recognition task was adopted and the sta-
tistical structure models proposed in this paper with RDSA achieved
the recognition rate of 98.3%, which is higher than that of 4,130-
speaker HMMs with CMN (97.4%).

For future work, the optimal parameter division should be ob-
tained to realize more appropriate constraints on the allowable geo-
metrical transformations for broader speaker variability. Further, we
are now implementing an algorithm to estimate a structure from an
utterance including consonant sounds to build a word recognizer for
practical use.
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