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ABSTRACT

Phoneme segmentation is a fundamental problem in many speech
recognition and synthesis studies. Unsupervised phoneme segmen-
tation assumes no knowledge on linguistic contents and acoustic
models, and thus poses a challenging problem. The essential ques-
tion here is what is the optimal segmentation. This paper formulates
the optimal segmentation problem into a probabilistic framework.
Using statistics and information theory analysis, we develop three
different objective functions, namely, Summation of Square Error
(SSE), Log Determinant (LD) and Rate Distortion (RD). Specially,
RD function is derived from information rate distortion theory and
can be related to human signal perception mechanism. We intro-
duce a time-constrained agglomerative clustering algorithm to find
the optimal segmentations. We also propose an efficient method to
implement the algorithm by using integration functions. We carry
out experiments on TIMIT database to compare the above three ob-
jective functions. The results show that Rate Distortion achieves the
best performance and indicate that our method outperforms the re-
cently published unsupervised segmentation methods [1, 2, 3].

Index Terms— Unsupervised phoneme segmentation, Rate Dis-
tortion theory, Agglomerative clustering

1. INTRODUCTION

A number of speech analysis and synthesis applications need to di-
vide speech signals into phonetic segments (phonemes and syllables)
[4]. Both Automatic Speech Recognition (ASR) models and Text-to-
Speech (TTS) systems depend on reliable segmentation for achiev-
ing good performance [5]. Unlike written language, speech signals
do not include explicit spaces for segmentation. Although manual
segmentation can be precise, it is usually expensive. For this rea-
son, automatic phoneme segmentation has received much research
interest [5, 6, 1, 2, 3].

The approaches to phoneme segmentation can be divided into
two classes. The first class requires linguistic contents and acous-
tic models of phonemes. The segmentation is usually converted to
the alignment of speech signals with given texts. Perhaps the most
famous method of this class is the HMM-based forced alignment
[5]. Another class of methods tries to perform phonetic segmenta-
tion without any prior knowledge, which is known as unsupervised
segmentation. Our approach belongs to the second class. The un-
supervised segmentation is similar to a phenomenon that an infant
perceives speech [7]. Most of the previous approaches to this prob-
lem focused on detecting on the change points of speech signals and
took these points as the boundaries of phonemes. Aversano et. al [1]
defined “jump function” to capture the changes in speech signals and
identified the boundaries as the peaks of jump function. Dusan and
Rabiner [2] detected the “maximum spectral transition” positions as

phoneme boundaries . Estevan et. al [3] employed maximum margin
clustering to locate boundary points.

Different from these change point detection methods, this paper
tries to solve the phoneme segmentation problem by answering the
essential question: what kind of segmentation is optimal. In other
words, we want to find objective function to evaluate the goodness
of segmentation. This is a hard problem as we have neither infor-
mation on the categories of the phonemes nor prior knowledge on
their acoustic models. In this paper, we formulate the segmentation
problem in a probabilistic framework. Using statistics and informa-
tion theory analysis, we develop three objective functions, namely,
1) Summation of Square Error, 2) Log Determinant and 3) Rate Dis-
tortion. To optimize these objective functions, we use a time con-
strained agglomerative clustering algorithm. We also develop an
efficient implementation based on integration functions, which can
largely reduce the computational time. The proposed objective func-
tions are compared through experiments on TIMIT database. Rate
Distortion achieves the highest recall rate among the three objective
functions. Our rates are also better than the recently published re-
sults on unsupervised phoneme segmentation [1, 2, 3].

2. FORMULATION OF OPTIMAL SEGMENTATION

Let X = {x1, x2, ..., xn} denote a sequence of mel-cepstrum vec-
tors calculated from an utterance, where n is the length of X and
xi is a d-dimensional vector. The objective of segmentation is to
divide sequence X into k non-overlapping contiguous subsequences
(segments) where each subsequence corresponds to a phoneme.

We use S = {s1, s2, ..., sk} to denote the segmentation infor-
mation, where sj = {cj , cj + 1, ..., ej} (cj and ej denote the start
and end indices of j-th segment.). Let Xcj :ej (or Xsj ) represent the
j-th segment xcj , xcj+1, ..., xej .Size of segment |sj | = ej −cj +1.
Without any constraint, there are n−1Ck−1 possible cases of seg-
mentations.

For speech signals, it is natural to make the assumption that each
individual phoneme is generated by an independent source. Let rj

denote a source for observed segment sj . R = {r1, r2, ..., rk} de-
notes a source sequence, and p(x|rj) represents for a probability
model between x and rj . We have,

p(X|S, R) =

kY

j=1

Y

i∈sj

p(xi|rj) =

kY

j=1

ejY

i=cj

p(xi|rj). (1)

In the next sections, we sketch the deductions of several optimal
objective functions for unsupervised phoneme segmentation. More
details can be found in a technical report [8] 1.

1Available at: http://www.gavo.t.u-tokyo.ac.jp/∼qiao/optseg07.pdf
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2.1. Summation of Square Error and Log Determinant

Using maximum likelihood estimation (MLE), the optimal segmen-
tation can be formulated as

min
S

{− log(p(X|S, R))} = min
S

{
kX

j=1

ejX

i=cj

− log(p(xi|rj))}. (2)

If the source sequence R is given, the above problem can be solved
by Viterbi decoding or dynamic programming [6]. However, in un-
supervised segmentation, we have no knowledge on R. To handle
this difficulty, we need to make assumptions on the source distribu-
tions rj . Like many speech applications [4], we assume that p(x|rj)
is a multi-variable normal distribution with mean mj and covariance
matrix Σj If sj is known, mj and Σj can be estimated as,

m̂j =
1

|sj |
ejX

i=cj

xi, (3)

Σ̂j =
1

|sj |
ejX

i=cj

(xi − m̂j)(xi − m̂j)
T . (4)

Using r̂j(m̂j , Σ̂j), Eq. 2 reduces to,

− log(p(X|S, R̂)) =

kX

j=1

ejX

i=cj

− log(p(xi|rj))

=
nd

2
log(2π) +

1

2

kX

j=1

|sj | log det(Σ̂j) +
nd

2
. (5)

In information theory, the differential entropy (Chapter 9, [9]) of

normal distribution r̂j(m̂j , Σ̂j) is log2((2πe)d det(Σ̂j))/2. Recall
that the entropy denotes the expectation bits to describe a random
variable. Thus MLE estimation by Eq. 5 will lead to minimize the
description length of the sequence. This is in accordance with the
minimum description length principle (MDL) [10]. Because the first
and the third terms of Eq. 5 do not depend on S, Eq. 5 can be
reduced to the following Log Determinant (LD) function,

LD(X, S) =

kX

j=1

|sj | log det(Σ̂j). (6)

If covariance matrix Σ is fixed as an unit matrix I and we only
estimate mean m̂j = 1/|sj |P

x∈sj
x, Eq. 2 becomes,

− log(p(X|S, R̂)) =

kX

j=1

ejX

i=cj

d

2
log(2π) +

1

2
(xi − m̂j)

T (xi − m̂j)

=
nd

2
log(2π) +

1

2

kX

j=1

ejX

i=cj

||xi − m̂j ||2. (7)

Note only the second item is influenced by segmentation S. Thus the
problem equals to minimizing the following Summation of Square
Error function (SSE),

SSE(X, S) =

kX

j=1

ejX

i=cj

||xi − m̂j ||2. (8)

The above formula is the same as the objective function of k-means
clustering (Chapter 3.5 [11]). However, there is an important differ-
ence that our objective is to segment sequence, while k-means aims
at clustering elements without time constraint.

2.2. Rate Distortion

Consider the perception mechanism of human ears. There is a limit
on the smallest spectral differences which can be perceived by hu-
man ears(Chapter 5 [12]). Human’s are not sensitive to small per-
turbations in speech signals, that is why two linguistically identical
utterances with small acoustic differences can be perceived as the
same. This indicates that, for speech segmentation, we need not fo-
cus on the details of speech signals. In the next, we are going to de-
velop a perturbation tolerance cost: Rate Distortion function based
on the information Rate Distortion (R-D) theory (Chapter 13. [9]).

R-D theory was a branch of information theory created by Shan-
non. It has been shown that R-D theory is related to human percep-
tion mechanism [13]. In fact, many popular audio and video com-
pression standards such as MP3, JPEG and MPEG make use of R-D

techniques [13]. For x under Gaussian distribution r̂j(m̂j , Σ̂j), we
introduce another random variable y, and allowable distance bound
ε such that E(x − y)2 ≤ ε. The objective of R-D is to code y with
the fewest number of bits possible. Note here we don’t take interest
in a practical coding algorithm, but coding length when permitting
distortion. We can model y using x with an additive Gaussian noise
model: y = x + z, where noise z ∼ N(0, εI) [9]. Then, we have

E(y − ȳ)2 = E(x − x̄)2 + 2E(x − x̄)Ez + Ez2 = εI + Σ̂j .
(9)

Thus the entropy of y is bounded by log(2πe)d det(εI+Σ̂j)/2. The
rate distortion function [9] is defined as R(ε) = minE(x−y)2≤εI(x; y)
to represent the infinimum of rates such that bound ε can be achieved.
We have,

I(x; y) = h(y) − h(z)

≤ 1

2
log((2πe)d det(εI + Σ̂j)) − 1

2
log((2πe)d det(εI))

=
1

2
log det(I + Σ̂j/ε) (10)

The last line yields an upper bound for rate distortion function
2. We use Eq. 10 to define the Rate Distortion (RD) function of X
under segmentation S,

RD(X, S) =

kX

j=1

|sj | log det(I + Σ̂j/ε). (11)

We noticed that a similar measure had been successfully used
for image segmentation in computer vision recently [14]. However,
we don’t use the coding lengths for segmentation and mean vector.
It can be proved that the segmentation by minimizng Log Determi-
nant (Eq. 6) or Rate Distortion (Eq. 11) is invariant to orthogonal
transformations. Details and proof are available in [8].

3. OPTIMIZATION ALGORITHM

In Section 2, we have developed three objective functions for seg-
mentation: Summation of Square Error (Eq. 8), Log Determinant
(Eq. 6) and Rate Distortion (Eq. 11). The next problem is how to
minimize these objective functions. It is not hard to see that all the
three functions can be written into the following form:

min
{s1,s2,...,sk}

kX

j=1

f(X, sj), (12)

2The upper bound by Eq. 10 still holds when x is not gaussian. Roughly
speaking, this is because gaussian variables are mostly difficult to code.
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where f(X, sj) can be seen as a function to represent the inner vari-
ance (or coherence) of segmentation Xsj .

Perhaps the quickest idea to optimize Eq. 12 for a sequence is
to use dynamic programming (DP). However, the direct use of DP
needs time cost O(n2k), where n is the length of sequence and k is
the number of segments. This makes it impractical for our problem,
as an utterance of sentence may contain several thousands of frames.
In this paper, we use an agglomerative clustering algorithm (Chapter
3.2 [11]) to optimize Eq. 12. The algorithm works in a bottom-up
manner. It begins with each frame as a segment and merge some
frames into larger segments successively in a greedy way. The algo-
rithm can be solved in time O(n). Details are as follows.

Algorithm 1 Agglomerative Segmentation (AS) Algorithm

1: INPUT sequence X = (x1, x2, ..., xn) and the number of seg-
ments k.

2: Initialize segmentations as S = {sj = j}n
j=1, t = n.

3: while t > k do
4: find index j′, which minimizes the following equation

f(X, sj ∪ sj+1) − f(X, sj) − f(X, sj+1); (13)

5: merge sj′ and sj′+1 into a single segment;
6: t = t − 1.
7: end while
8: OUTPUT segmentation S.

3.1. Fast implementation

One of the most computationally expensive steps in the AS algorithm
is to calculate variance (using Eq. 8) or covariance matrix (using Eq.
6 and Eq. 11) for a segment. This computation must repeat many
times until the algorithm terminates. In fact, we need not directly
use the summation form of Eq. 3, Eq. 8 and Eq. 4 to calculate mean,
variance and covariance every time. There is a more efficient way.
We can calculate the following integration functions firstly:

G1(i) =

iX

k=2

xk−1 (G1(1) = 0), (14)

G2(i) =

iX

k=2

xk−1x
T
k−1 (G2(1) = 0), (15)

where i = 1, 2, ..., n + 1. Note G1(i) is a vector and G2(i) is a
matrix. Then the mean mj , variance Vj and covariance matrix Σj of
segment Xsj ( sj = (cj , ..., ej)) can be calculated by:

mj =
1

ej − cj + 1
(G1(ej + 1) − G1(cj)), (16)

Σj =
1

ej − cj + 1
(G2(ej + 1) − G2(cj)) − mjm

T
j , (17)

Vj = Diag(Σj), (18)

where ‘Diag’ denotes the diagonal of a matrix. In this implemen-
tation, the integration functions only need to be calculated once at
the beginning. After that, mean, variance and covariance can be es-
timated without summation operations.

4. EXPERIMENTS

We use the training part from the TIMIT American English acoustic-
phonetic corpus [15] to evaluate and compare the proposed objective

Table 1. Comparison of the average absolute shift errors

Method SSE LD LD-DIA RD RD-DIA

Error(ms) 16.6 18.8 17.8 15.1 16.0

functions. The database includes 4,620 sentences from 462 Amer-
ican English speakers of both genders from 8 dialectal regions. It
includes more than 170,000 boundaries, totally. The sampling fre-
quency is 16kHz. For each sentence, we calculate the spectral fea-
tures from speech signals by 16ms Hamming windows with 1ms
shift, and then transform spectral features into 12 mel-cepstrum co-
efficients (excluding the power coefficient). We design the following
two experiments to evaluate and compare the three types of objective
functions. Comparisons with other methods are also given at last.

4.1. Experiment 1: segmentation of biphone subsequences

In the first experiment, we extracted all the biphone segments by
referring to the label information of TIMIT database. For each bi-
phone segment, its central boundary is detected by minimizing the
proposed objective functions. This is relatively simple. We can eas-
ily find the global optimal boundary and calculate the shift error be-
tween the detected boundary and the ground truth boundary, which
are both difficult in total sequence segmentation tasks.

We did experiments to compare the performances of the follow-
ing functions: 1)summation of square error (SSE), 2) log determi-
nant estimated by diagonal covariance matrix (LD-DIA), 3)log de-
terminant estimated by full covariance matrix (LD), 4) rate distortion
estimated by diagonal covariance matrix (RD-DIA), 5)rate distor-
tion estimated by full covariance matrix (RD). To avoid the singular
problem of covariance matrix, the minimum length of a segment is
set as 18ms. The R-D distance bound ε (Eq. 11) is set as 0.05. The
Absolute Shift Error (ASE) between the detected boundary and the
ground truth are calculated for each subsequence. The average ASEs
of the five methods are shown in Table. 1. We can find that RD has
the least ASE among all the compared objectives.

4.2. Experiment 2: segmentation of sentences

In the second experiment, we examine the proposed objective func-
tions on the sequence segmentation tasks. The agglomerative seg-
mentation (AS) algorithm introduced in Section 3 is used. We set
the stop number k of the AS algorithm as the number of phonemes
in the sentence. The AS algorithm starts with one frame in each
segmentation. When the number of frames of a segmentation is less
than 12, the covariance matrix of the segmentation will be singular
and its determinant will be zero. This fact prohibits us to use LD. So
we execute experiments on the other four methods: SSE, LD-DIA,
RD, and RD-DIA. We count how many ground truth boundaries are
detected within a tolerance window (20∼40ms). The recall rate is
adopted as a comparison criterion,

Recall rate =
number of boundaries detected correctly

total number of ground truth boundaries
.

The results are summarized in Table 2. We can find that rate dis-
tortion based measures (RD and RD-DIA) always outperform other
measures (SSE and LD-DIA). When the window size is small (20ms),
the performance of SSE and RD (RD-DIA) is very near. However,
the differences between SSE and RD (RD-DIA) increase when the
tolerance windows enlarge. We think the reason mostly comes from
the AS-algorithm. The reliable calculation of covariance matrix for
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Table 2. Recall rates of sequence segmentation

Method SSE LD-DIA RD RD-DIA

20ms 76.7% 70.4% 76.1% 76.7%
30ms 86.7% 83.5% 88.5% 87.8%
40ms 92.4% 90.6% 94.7% 93.6%

Table 3. Recall rates with pre-segmentation

Method SSE RD RD-DIA ASE

20ms 77.1% 77.1% 77.5% 72.5%
30ms 86.8% 89.0% 88.1% 80.5%
40ms 92.3% 94.9% 93.7% 85.3%

RD (RD-DIA) requires an enough number of frames in a segment.
However, this requirement cannot be satisfied at the beginning phase
of the AS algorithm, when the segments are small. Moreover, the
AS algorithm with RD or SSE prefers to merge shorter segments as
this will usually lead to the smaller value of Eq. 13. To verify this
prediction, we did another experiment where we use a simple Av-
erage Square Error (ASE) function fm(X, s) for pre-segmentation.
fm(X, s) =

P
j∈s(xj − x̄)2/|s|, where mean x̄ =

P
j∈s xj/|s|.

It should be noted that ASE has a poor performance if we use it
thoroughly (Last column, Table 3). Here we just used it to do pre-
segmentation until the number of segments reaches five times of the
number of phonemes in a sentence. The pre-segmentation is done in
the same way for all the compared methods (SSE, RD and RD-DIA).
The results are shown in Table 3. We can find that the recall rates
can be improved with such a simple pre-segmentation. It is noted
that this is just a rough test. One may improve the results by using
better cost functions and schemas for pre-segmentation.

4.3. Comparisons with other methods

It is not easy to directly compare our method with other unsupervised
segmentation methods, since many authors use different data sets
and testing protocols. Here, tolerance window size is set as 20ms,
since we found that it is most widely used. In [2], with the same
database, the authors showed a detected rate of 84.5%, and among
them, 89% are within 20ms. So their rate is 0.845× 0.89=75.2%,
which is lower than ours 77.5%. Moreover, our insertion rate is
20.9%, which is lower than 28.2% shown by [2]. [3] used the testing
part of TIMIT database, which includes less number of sentences
(1,344) than we used. When their over-segmentation equals zero,
the correct detection rate in their experiments corresponds to our re-
call rate. In this case, our result is better than theirs (76.0%) [3]. In
[1], the authors use a subset of TIMIT database which contains 480
sentence and showed a recall rate 73.6%.

5. CONCLUSIONS

This paper proposes a class of optimal segmentation methods for
unsupervised phoneme boundary detection. We formulate the seg-
mentation problem in a probabilistic framework, and develop three
objective functions for segmentation through statistics and informa-
tion theory analysis: Summation of Square Error, Log Determinant
and Rate Distortion. Especially, Rate Distortion is deduced by us-
ing information theory and can be related to human audio perception
mechanism. We introduce an agglomerative segmentation algorithm
to find the optimal segmentation and show how to implement the
algorithm in an efficient way. Experimental results show that Rate

Distortion outperforms other two objective functions. The results
also indicate that our methods achieve higher recall rates than recent
published methods [1, 2, 3]. It is not our main objective in this paper
to develop a high recall rate segmentation method. Our main focus
here is to study unsupervised phoneme segmentation by trying to an-
swer “what is the optimal segmentation”. We believe that the results
can be improved if incorporating other features and using complex
optimization algorithms, which will be our future work. We are also
going to apply the proposed methods on the event detection problem
in our universal structure study [16]. Finally, it should be noted that
the methods proposed in this paper not only apply to the phoneme
segmentation but also may have applications in other sequence seg-
mentation problems.
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