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1 Introduction

The aim of speech recognition is to extract only
the linguistic information from speech signals. The
acoustic variations caused by non-linguistic factors,
such as speaker, communication channel and noise,
pose a challenging problem for speech recognition.
The same text can lead to different acoustic obser-
vations due to different speakers and different en-
vironments. To deal with these variations, mod-
ern speech recognition approaches mainly make use
of the statistical methods (such as GMM, HMM)
to model the distributions of the acoustic features.
These methods can achieve relatively high recogni-
tion rates when properly trained. However, they
always require a large number of high quality data
for training. This is very different from children spo-
ken language acquisition, where the children mainly
use very biased training data from mothers and fa-
thers. This fact largely indicates that there may ex-
ist robust representations of speech which are nearly
invariant to non-linguistic variations.

Along this line, the third author of this pa-
per proposed an invariant structural representation
of speech signals, which tries to remove the non-
linguistic factors in speech signals [1]. Different
from classical speech models, this structural repre-
sentations focus on the dynamic motions in speech
and discard the static features. Mathematically,
the structural representations are made up of Bhat-
tacharyya distances (BD), which are invariant to in-
vertible transformations on feature space [2]. Our
previous works have demonstrated the effectiveness
and efficiency of this novel representation in both
speech recognition tasks [3, 4] and computer aided
language learning (CALL) systems [5].

However, there are two limitations for direct use of
structural representation for speech recognition. 1)
Its dimension is high, which not only increases the
computational cost but also makes it easily suffer
from the curse of dimensionality [3]. 2) The invari-
ance can be too strong, such that two linguistically
different speech signals may have similar structural
representations [4]. In this paper, we introduce the
techiniques of dimension reduction and discriminant
analysis to address these two problems. As first, we
build a structure for each sub-stream of the cep-
strum features to overcome the too strong invari-
ance. Then we calculate a reduced structure vector
for each sub-stream and apply linear discriminant
analysis for final classification. The new represen-
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Fig. 1 Invariance of Bhattacharyya distance.

tation not only has a lower dimension but also is
more discriminative. We carried out experiments
on recognizing connected Japanese vowels. The ex-
perimental results show that the proposed method
not only achieves higher recognition rate but also
largely reduces the computational time of classifica-
tion than the previous structure-based speech recog-
nition methods [3, 4].

2 Invariant structure for speech rep-
resentation

In this section, we will give a brief overview on
invariant structure theory and on how to calculate
structural representations from utterances [1, 3, 4].

2.1 Theory of invariant structure

Consider feature space X and pattern P in X.
Suppose P can be decomposed into a sequence of m

events {pi}m
i=1. Each event is described as a distri-

bution pi(x) in feature space. Note x can have mul-
tiple dimensions. Assume there is a map f : X → Y

(linear or nonlinear) which converts x into new fea-
ture y. In this way, pattern P in X is mapped to
pattern Q in Y , and event pi(x) is transformed to
event qi(y). Thus if we can find invariant metrics in
both space X and space Y , these metrics can yield
robust features for classification.

Under invertible transformation f , it is not diffi-
cult to calculate that distribution qi(y) can be ex-
pressed by,

qi(y) = pi(f−1(y))|J(y)|, (1)

where f−1 denotes the inverse function of f , and
J(y) is the Jacobian matrix of function f−1. Con-
sider the Bhattacharyya distance (BD) defined by,

BD(pi, pj) = − ln
∫

(pi(x)pj(x))1/2dx. (2)

The invariant structure theory [1] proves that
BD keeps invariant under transformation f , that
is, BD(pi, pj) = BD(qi, qj) (Fig.1). If pi(x)
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Fig. 2 Framework of structure construction.

and pj(x) are Gaussian with mean µi, µj and co-
variance Σi, Σj , we have BD(pi, pj) = 1

8 (µi −
µj)T (Σi+Σj

2 )−1(µi − µj) + 1
2 ln |(Σi+Σj)/2|

|Σi|1/2|Σj |1/2 .

2.2 Structuralization of an utterance

In the next, we show how to calculate a struc-
tural representation from an utterance. As shown
in Fig. 2, at first, we calculate a sequence of cep-
strum from input speech waveforms. Then an HMM
is trained from a single cepstrum sequence and each
state of HMM is regarded as event pi. Thirdly we
calculate the Bhattacharyya distances between any
two events. These distances will form an m × m

symmetric distance matrix MBD with zero diago-
nal, which can be seen as the structural represen-
tation. For convenience, we can expand the upper
triangle of MBD into structure vector z of dimen-
sion m(m−1)/2. It is easy to see that this structural
representation must be invariant to transformations
in feature space. In speech engineering, many non-
linguistic variations can be modeled as affine trans-
formations on cepstrum-feature space [1]. And thus
the structural vector should be approximately in-
variant to the non-linguistic variations. The Eu-
clidean distance between the structural vectors of
two utterances can be used a matching score for
speech recognition [1]. More details of this proce-
dure can be found in [1, 3, 4].

3 Dimension Reduction and Discrim-
inant analysis

The most attractive property of structural rep-
resentation is its invariance to transformation on
feature space, which allows us to remove the non-
linguistic factors in speech recognition. However,
there are two limitations for directly using struc-
tural representations for speech recognition: 1) the
invariance can be too strong, such that two linguisti-
cally different speech signals may have similar struc-
tural representations [4]; 2) its dimension is high,
which not only increases the computational cost but
also makes it easily suffer from the curse of dimen-
sionality [3]. In the next, we describe a method to
deal with both the limitations, which includes three
steps: multiple stream structuralization, dimension
reduction and discriminant analysis.

BD calc. BD calc. BD calc.

Event 1 Event 2 Event m

Structure 1 Structure 2 Structure k

Fig. 3 Multiple stream structuralization.

3.1 Multiple stream structuralization

The invariant structures discard the non-linguistic
information in speech signals. On the other hand,
since the structure is invariant to any invertible lin-
ear or nonlinear transformations, some linguistic in-
formation, which is useful for recognition, may also
be discarded. This is called “too strong invariance
problem”, which decreases the recognition perfor-
mance of structural representation [4]. To over-
come the first limitation, we need to release the
too strong invariance and to find a rich representa-
tion which provides discriminative information for
classification. In other words, we wish to balance
the invariant property and the discriminate abil-
ity of structural representation. Our previous work
[4] introduced a multiple stream structuralization
method to deal with this problem. We divide a
speech stream into several sub-streams according to
the dimensionality of cepstrum features, and calcu-
late Bhattacharyya distances for each sub-stream,
as shown in Fig. 3. Geometrically speaking, this
equals to decompose the feature space into several
sub-spaces and construct a structural representation
in each subs-space. The multiple stream structural-
ization allows us to preserve more discriminative in-
formation of speech signals without too much effect-
ing the invariance of structures [4].

3.2 Dimension reduction

The dimension of structure representation is usu-
ally high. Let m denote the number of events. Then,
the dimensionality of its structural representation is
m(m−1)/2. When using multiple stream structural-
ization, the dimensionality raises to km(m − 1)/2,
where k is the number of streams. The high di-
mensionality not only increases the computational
cost and but also makes it difficult to train ro-
bust classifiers (known as the curse of dimension-
ality problem [6]). On the other hand, the BDs
are highly correlated features (thinking dpi,pj can
be largely influenced by dpi,pk

and dpk,pj ). This
fact makes dimension reduction possible. Let zj

denote a structure vector of the j-th stream. We
apply principal component analysis (PCA) on the
structure vectors of each stream and find that the
first 10% eigen vectors with the largest eigen val-
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ues contain 80∼90% energy of the whole structure
vectors. Let Ej = [ej

1, e
j
2, ..., e

j
t ] denote the first t

(t < m(m − 1)/2) eigen vectors with the largest
eigen values of the covariance matrix of the j-th
stream. Consider space Sj of the structure vec-
tors of the j-th stream. Sj has a dimensionality
of m(m− 1)/2. ej

1, e
j
2, ... and, ej

t span a subspace of
Sj , which best accounts for the distribution of the
j-th stream’s structure vectors. The eigen vectors
with small eigen values usually corresponds to unim-
portant and noisy directions in Sj . We can obtain
reduced structure vector (RSV) vj by projecting zj

into the subspace spanned by Ej ,

vj = ET
j (zj − ẑj), (3)

where ẑj is the mean structure vector of the j-th
stream. vj has a dimension of t, which is much less
than m(m − 1)/2.

Instead of PCA, the second author independently
proposed a linear discriminant analysis (LDA) for
dimension reduction [7]. LDA, also known as Fisher
discriminant analysis (FDA) [8], aims at finding a
linear transformation like Eq. 3 to reduce dimen-
sionality. The difference comes from how to calcu-
late the transformation matrix Ej . LDA calculates
Ej in a supervised way by finding the maximally
discriminant features.

3.3 Discriminant analysis

After dimension reduction, we combine the re-
duced structure vectors from each stream into a sin-
gle one and make use of LDA for classification. Al-
though LDA can be used for dimension reduction
in step 2 [7], it is noted that LDA severs here as a
classifier.

Let v = [v1, v2, ..., vk] denote an augmented struc-
ture vector (ASV), where k is the number of sub-
streams. For convenience, we use vi to represent
the ASV of i-th utterance. LDA aims at finding a
discriminant linear transformation W to calculate
the discriminative features WT v. Mathematically,
this is achieved by maximizing the following ratio
(generalized Rayleigh quotient),

Ŵ = arg max
W

|WT SbW |
|WT SwW |

, (4)

where Sb is the between-class scatter matrix, and Sw

is the within-class scatter matrix of the ASVs. As-
sume we have M training samples {vi}M

i=1 belonging
to N categories {Cj}N

j=1. Let nj denote the number
of training samples in Cj . Then Sb and Sw can be
calculated by the following equations:

Sw =
N∑

j=1

∑
vi∈Cj

(vi − µj)(vi − µj)T , (5)

Sb =
N∑

j=1

nj(µj − µ)(µj − µ)T , (6)

where µj is the mean of the ASVs of class Cj and µ

is the mean of all the training samples. Ŵ can be
computed as the eigenvectors of S−1

w Sb. For vector
v with unknown category, we classify it by using the
discriminative features:

arg min
j

|ŴT v − ŴT µj |. (7)

One may suggest to apply LDA directly on struc-
ture vector z without applying PCA in step 2. How-
ever, z has a high dimensionality, which makes LDA
easily suffer from the singular problem of covariance
matrix and overfit the training data [8]. Finally, it is
noted that discriminant analysis of eigen structure
resembles a very successful face recognition method,
usually called Fisherface [9]. One of the big differ-
ences between this method and ours is that we ap-
ply PCA on each sub-stream not the whole feature
vector. This is because that, in our problem, the
correlations between different sub-stream (cepstrum
features) are generally very small.

4 Experiments

We carried out experiments on the connected
Japanese vowel utterances database [4] to evaluate
the performances of the proposed method. Each
word in the database corresponds to a combina-
tion of the five Japanese vowels ‘a’,‘e’,‘i’,‘o’ and ‘u’,
such as ‘aeiou’,‘uoaei’, ... . So there are totally
120 words. It is noted that compared with con-
sonant sounds, vowel sounds usually exhibit larger
between-speaker acoustical variations. The utter-
ances of 16 speakers (8 males and 8 females) were
recorded. Every speaker provided 5 utterances for
each word. So the total number of utterances is
16×120×5=9,600. Among them, we use 4,800 utter-
ances from 4 male and 4 female speakers for training
and the other 4,800 utterances for testing. For each
utterance, we calculate the twelve Mel-cepstrum fea-
tures and one power coefficient. Then HMM train-
ing is used to convert a cepstrum vector sequence
into events (distributions). Since we have only one
training sample, we used an MAP-based learning al-
gorithm [10]. The trained HMM includes 25 states,
and each state is described by a 13-dimension Gaus-
sian distribution with a diagonal covariance matrix.
Following [4], we divide the 13D cepstrum+ 13D
delta cepstrum feature vectors into 13 multiple sub-
streams with block size 2. Each sub-streams con-
tains two cepstrum and two delta cepstrum features.
We calculate the structural vectors for each sub-
stream. Each structural vector has a dimensionality
of 25×24/2=300. We make comparisons between
PCA+LDA (P-LDA) and 2 phase LDA (2-LDA) [7]
in the following experiments.

The dimension t of reduced structure vector vi is
an important parameter. We change t from 5 to
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Fig. 4 Recognition rates vs. the dimension of re-
duced structure vector.

Fig. 5 Comparison of the recognition rates of dif-
ferent numbers of speakers in training data.

60 and see how it influences the recognition perfor-
mance. The results are summarized in Fig. 4. The
highest recognition rate 99.0% is achieved at t = 30
by P-LDA. One can also find that to increase t from
30 to 60 leads to a slight decrease of the recognition
rates. This is because that the eigen vectors as-
sociated with small eigen vectors (large index) usu-
ally correspond to noisy directions and don’t include
much information for classification. The best rates
are a bit higher than the recognition rate 98.3% of
word HMMs trained with the same data.

We reduce the number of training speakers, and
the results are shown in Fig. 5. Although the recog-
nition rates slightly drop as the number of speak-
ers decreases, we obtain a recognition rate 98.0%
with only four training speakers. Generally, we can
see that the performances of P-LDA and 2-LDA are
very close. In another study [7], we have found that
the structural representation achieved higher per-
formance than HMMs on the artificially warped ut-
terances, corresponding to those of speakers with
different vocal tract length.

We compare the recognition rate of our method
with those of the previous structure-based recogni-
tion methods, such as, multiple stream structural-
ization modeling (MSS) [4], and random discrimi-
nant structure analysis (RDSA) [3] . Results are
given in Table 1. The proposed method can achieve
the highest recognition rates among them. More-

Table 1 Comparisons of recognition rates
Method P-LDA 2-LDA[7] MSS[4] RDSA[3] HMM
Rate 99.0% 98.6% 95.3% 98.3% 98.3%

over, it is much faster than the previous structure-
based recognition methods. The computational
time for classification is only about 1/60 of MSP
and 1/65 of RDSA.

5 Conclusions

This paper proposes the method of dimension
reduction and discriminant analysis for structure-
based speech recognition. The proposed method
deals with two limitations of invariant structural
representation, too strong invariance and high di-
mensionality. The too strong invariance is released
by constructing structures for each stream of speech
signal. PCA and LDA are used to reduce the dimen-
sion and to obtain a discriminative representation.
Experiments show that our method achieves a recog-
nition rate (99.0%) on a connected Japanese vowel
database, which is higher than the results of our
previous structure-based methods [3, 4], and word
HMMs trained with the same data set. Moreover,
the proposed method is about sixty times faster than
the previous ones [3, 4] in classification. As fu-
ture work, we are now investigating structure based
methods for recognizing utterances including conso-
nant sounds. We will study how to compare struc-
tures with different numbers of events.
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