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1 Introduction

There always exist variations caused by non-
linguistic factors, such as, gender, age, noise etc in
speech signals. The same phoneme sequences can be
converted to various acoustic observations by differ-
ent speakers and by the same speaker but at dif-
ferent times. Modern speech recognition methods
deal with these variations mainly by taking advan-
tage of statistical methods (such as GMM, HMM) to
model the distributions of data. These methods can
achieve relatively high recognition rates when using
proper models and sufficient training data. How-
ever, to estimate reliable distributions, these meth-
ods always require a large number of samples for
training. The successful commercial speech recog-
nition systems always make use of millions of data
from thousands of speakers for training [1]. How-
ever, it is very different from children’s spoken lan-
guage acquisition. A child does not need to hear the
voices of thousands of people before he (or she) can
understand speech. This fact largely indicates that
there may exist robust measures of speech which are
nearly invariant to non-linguistic variations. It is by
these robust measures, we consider that young chil-
dren can learn speech by hearing very biased train-
ing data called “mother and father”.

Recently, Minematsu found that Bhattacharyya
distance (BD) is invariant to transformations (linear
or nonlinear) on feature space [2, 3], and proposed
an invariant structural representation of speech sig-
nal. Our previous works have demonstrated the ef-
fectiveness of invariant structural representation in
both speech recognition task [4, 5, 6] and computer
aided language learning (CALL) systems [7, 8].

There is a question: are there invariant measures
other than BD, or, more generally, which kind of
measures can be invariant? In this paper, we show
that f -divergence [9, 10] provides a family of in-
variant measures and prove all invariant measures
of integration type must be written in the form of
f -divergence. f -divergence family includes many
famous distances and divergences in information
and statistics, such as, Bhattacharyya distance, KL-
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divergence, Hellinger distance, Pearson divergence,
and so on. We also carried out experiments to
compare several well-known forms of f -divergence
through a task of recognizing connected Japanese
vowel utterances. The experimental results show
that BD and KL have the best performance among
the measures compared. A portion of this work will
appear in [11].

2 Invariance of f-divergence

In this section, we give a brief introduction on
f -divergence at first, and then discuss the invari-
ant property of f -divergence. In probability theory,
Csiszár f -divergence [9] (also known as Ali-Silvey
distance [10]) measures the difference of two distri-
butions. Formally,

fdiv(pi(x), pj(x)) =
∫

pj(x)g(
pi(x)
pj(x)

)dx, (1)

where pi(x) and pj(x) are two distributions on fea-
ture space X. g : [0,∞) → R is a convex func-
tion and g(1) = 0. X can be an n-dimensional
space with coordinates (x1, x2, ..., xn). In this way,
Eq. 1 is a multidimensional integration and dx =
dx1dx2...dxn. Many well known distances and diver-
gences in statistics and information theory such as
KL-divergence, Bhattacharyya distance, Hellinger
distance etc., can be seen as special cases of f -
divergence.

Consider two distributions pi(x) and pj(x) in fea-
ture space X (x ∈ X). Let h : X → Y (linear or
nonlinear) denote an invertible mapping (transfor-
mation) function, which convert x into new feature
y. In this way, distributions pi(x) and pj(x) are
transformed to qi(y) and qj(y) (Fig. 1), respectively.
We wish to find measures f invariant to transfor-
mation h, f(pi, pj) = f(qi, qj). The invariant mea-
sures can serve as robust features for speech analysis
and classification. We have the following theorem as
shown in Fig. 1.

Theorem 1 The f-divergence between two distri-
butions is invariant under invertible transformation
h on feature space X,

fdiv(pi(x), pj(x)) = fdiv(qi(y), qj(y)). (2)
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Fig. 1 Invariance of f -divergence.

Let F : R → R denote any real value function.
It is easy to see that F (fdiv(pi(x), pj(x))) is also in-
variant to transformation. In the next, we consider
a more general form of Eq. 1, M(pi(x), pj(x)) =∫

pj(x)G(pi(x), pj(x))dx, which we call integration
measure. There is a question, whether or not there
exist invariant integration measures other than f -
divergence? The answer is NO.

Theorem 2 All the invariant integration measures
have to be written in the form of

∫
pj(x)g( pi(x)

pj(x) )dx.

Theorem 1 and Theorem 2 together show the
sufficiency and necessity of the invariance of f -
divergence. We can generalize the invariant mea-
sure from two distributions to n distributions. Us-
ing the similar analysis of the proofs for Theorem 1
and Theorem 2, we have,

Theorem 3 The invariant measure for n distribu-
tions p1(x), p2(x), ..., pn(x) have and must have the
following F -measure form

DF (p1(x), p2(x), ..., pn(x)) = (3)∫
pn(x)F (

p1(x)
p2(x)

,
p2(x)
p3(x)

, ...,
pn−1(x)
pn(x)

)dx, (4)

where F : Rn−1 → R. Generally, f -
divergence may not be a metric, since it may
not satisfy symmetry rule (fdiv(pi(x), pj(x)) 6=
fdiv(pj(x), pi(x))) and subadditivity triangle in-
equality (fdiv(pi(x), pj(x)) + fdiv(pj(x), pk(x)) <

fdiv(pi(x), pk(x))). But there exist special forms of
f -divergence, which is also a metric. Hellinger dis-
tance is such an example, HD(pi, pj) =

∫
(
√

pi(x)−√
pj(x))2dx. More generally, it was shown that a

subclass of f -divergence, named fβ-divergence, also
satisfies the constraints of metric [12].

3 Calculation of f-divergence

There is a problem of how to calculate f -
divergence. Unfortunately, in general cases, there
exists no closed-form solution for f -divergence of Eq.
1. In the next, we will discuss several techniques to

calculate f -divergence for general cases and for a few
special types of distributions.

3.1 Calculation of f-divergence using
Monte-Carlo sampling

Since the direct calculation of f -divergence is in-
tractable, we can consider approximate methods
based on Monte-Carlo sampling [13]. This method
draws a set of independent samples {xk}K

k=1 from
the distribution pj(x) at first. Assume K is large
enough. Then, f -divergence can be approximated
by

fα(pi(x), pj(x)) ≈ 1
n

K∑
k=1

g(
pi(xk)
pj(xk)

). (5)

But this can be always computationally expensive.
Especially when x has a high dimension, we need a
huge number of random vectors for approximating
f -divergence.

3.2 f-divergence of Gaussian distributions

When the distributions are Gaussian, there may
exist closed-form solutions. Assume pi(x) and pj(x)
are two Gaussian distributions with mean µi and
µj and covariance matrix Σi and Σj , respectively.
Some examples are given as follows,

1) Bhattacharyya distance:

BD(pi(x), pj(x)) =
1

8
(µi − µj)

T (
Σi + Σj

2
)−1(µi − µj)

+
1

2
log

|(Σi + Σj)/2|
|Σi|1/2|Σj |1/2

. (6)

2) KL divergence:

KL(pi(x), pj(x)) =

1

2
(log

|Σj |
|Σi|

+ tr(Σ−1
j Σi) + (µj − µi)

T Σ−1
j (µj − µi)). (7)

3) Hellinger distance:

HD(pi(x), pj(x)) = 1 − exp(−BD(pi(x), pj(x))). (8)

3.3 f-divergence of Gaussian mixtures

When pi(x) and pj(x) are Gaussian mixtures,
there exist fast approximation techniques other
than Monte Carlo sampling. For example, one
can use unscented transform [14, 15] to calculate
the f -divergence. Let Gaussian mixture pj(x) =∑M

m=1 wmN(x|µm, Σm). For each Gaussian distri-
bution N(x|µm, Σm), we can calculate a set of 2n

“sigma” points as

xk
m = µm +

√
λk

mUk
m, (9)

xk+n
m = µm −

√
λk

mUk
m, (10)

where (k = 1, 2, ..., n), λk
m and Uk

m are the k-th
eigenvalue and eigen vector of Σm, respectively. It is
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Fig. 2 An examples of a set of sigma points.

not hard to see that these points could capture the
mean and covariance information of N(x|µm,Σm).
Examples of sigma points are depicted in Fig. 2.

Using unscented transform, f -divergence can be
approximated by the following formula,

fdiv(pi(x), pj(x)) ≈ 1
2n

M∑
m=1

wm

2n∑
k=1

g(
pi(xk

m)
pj(xk

m)
).

(11)

Although the above calculation resembles the
Monte-Carlo sampling, it doesn’t require random
sampling, and it only needs a small number of
points. Therefore, it is much faster than the Monte-
Carlo sampling. One may also consider the vari-
ational approximation techniques to calculate the
f -divergence between two Gaussian mixtures [16].

4 Invariant structural representation

using f-divergence

f -divergence can be used to construct the invari-
ant structural representation of a pattern. Consider
pattern P in feature space X. Suppose P can be de-
composed into a sequence of m events {pi}m

i=1. Each
event is described as a distribution pi(x). We calcu-
late the f -divergence dP

ij between two distributions
pi(x), pj(x), and construct an m×m divergence ma-
trix DP with DP (i, j) = dP

ij and DP (i, i) = 0. Then
DP provides a structural representation of pattern
P . Assume there is a map f : X → Y (linear or
nonlinear) which transforms X into a new feature
space Y . In this way, pattern P in X is mapped to
pattern Q in Y , and event pi is transformed to event
qi. Similarly, we can calculate structure representa-
tion DQ for pattern Q. From Theorem 1, we have
that DQ = DP , which indicates that the structural
representation based on f -divergence is invariant to
transformations on feature space.

In the next, we describe a brief introduction on
how to obtain a structural representation from an
utterance [2, 4]. As shown in Fig. 3, at first, we
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Fig. 3 Framework of structure construction.

calculate a sequence of cepstral features from input
speech waveforms. Then an HMM is trained based
on that cepstrum sequence and each state of HMM
is regarded as event pi. Thirdly we calculate the f -
divergences between each pair of pi and pj . These
distances will form an m×m distance matrix D with
zero diagonal, which is the structural representation.
For convenience, we can expand D into a vector z

with dimension m(m − 1). If the f -divergence used
satisfies the symmetry rule fdiv(pi, pj) = fdiv(pj , pi)
(for examples, Bhattacharyya distance, Hellinger
distance, total variations), D is a symmetric matrix.
In this case, we only need use the upper triangle of D

and z has dimension m(m−1)/2. The Euclidean dis-
tance between two structural representations serves
as a matching score of utterances. It is shown that,
using structural representation, we can approximate
the difference without explicitly estimating transfor-
mation parameters [17].

5 Experiments

To compare the performance of various forms of
f -divergence on speech recognition, we used the con-
nected Japanese vowel utterances [4] in experiments.
Each word in the data set corresponds to a combina-
tion of the five Japanese vowels ‘a’,‘e’,‘i’,‘o’ and ‘u’,
such as ‘aeiou’,‘uoaie’, ... . So there are totally 120
words. The utterances of 16 speakers (8 males and
8 females) were recorded. Every speaker provided 5
utterances for each word. So the total number of ut-
terances is 16×120×5=9,600. Among them, we used
4,800 utterances from 4 male and 4 female speakers
for training and the other 4,800 utterances for test-
ing. For each utterance, we calculate twelve Mel-
cepstrum features and one power coefficient. Then
HMM training is used to convert a cepstrum vector
sequence into 25 events (distributions). Since we
have only one training sample, we used an MAP-
based learning algorithm [18]. Each state (event)
of an HMM is described by a 13-dimension Gaus-
sian distribution with a diagonal covariance matrix.
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Table 1 Comparisons of recognition rates
Method NN NM GM RDSA

Bhattacharyya dis. 93.0% 95.6% 96.4% 98.2%
Hellinger dis. 89.0% 95.1% 56.6% 96.0%

symmetric KL-div. 93.2% 95.6% 96.4% 98.4%

Following [4], we divided the 13D cepstrum feature
steam into 13 multiple sub-streams and calculated
the structures for each sub-stream. So an utter-
ance is represented as a set of 25 × 24 × 13 = 7, 800
edges. When using symmetric f -divergence, such as
BD and HD, only half of the edges (3,900) are nec-
essary. More details can be found in our previous
works [4, 5].

We calculate the structural representations by
using Bhattacharyya distance (BD), Hellinger dis-
tance (HD) and symmetric KL-divergence (SKL),
respectively. As for classification, we used the fol-
lowing classifiers: nearest neighbors (NN), near-
est mean (NM), Gaussian distribution model (GM)
and random discriminant structure analysis (RDSA)
[5]. For NN and NM, Euclidean distance is used.
For GM, we used diagonal covariance matrices.
For RDSA [5], we used 20 randomly selected sub-
structures with each including 700 edges. The re-
sults are summarized in Table 1. We can find that
the performances of symmetric KL-divergence and
Bhattacharyya distance are similar. And Hellinger
distance has the lowest recognition rates.

6 Conclusions

One of the basic problems in speech recognition is
to deal with the non-linguistic variations exhibited
by speech signals. Recently, an invariant representa-
tion for speech has been proposed for speech recogni-
tion, which is composed by Bhattacharyya distances
invariant to transformation. So there is a question
which kind of measure can be invariant. This pa-
per proves that f -divergence between two distribu-
tions yields a family of measures invariant to invert-
ible transformation (linear and nonlinear) on feature
space, and shows all invariant integration measures
have to be written in the form of f -divergence. We
discuss how to calculate f -divergence for the gen-
eral case and for Gaussian and Gaussian mixture
distributions. We described a short review on how
to construct an invariant structural representation
of an utterance by using f -divergences. In the ex-
periments, we compare the performance of several
well-known forms of f -divergences through recog-

nizing utterances of Japanese vowels. The results
show that Bhattacharyya distance and symmetric
KL-divergence achieve the best performance among
all the measures compared. It is noted that the in-
variance of f -divergence is very general, and doesn’t
limit to speech signal. The proposed theories may
have applications in other signal analysis and pat-
tern recognition tasks.
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