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Structural representation with a general form of invariant

divergence *

0 Yu Qiao, and Nobuaki Minematsu (The Univ. of Tokyo)

1 Introduction divergence, Hellinger distance, Pearson divergence,

and so on. We also carried out experiments to

There always exist variations caused by non- .
compare several well-known forms of f-divergence

linguistic factors, such as, gender, age, noise etc in .
& ’ » 8 » 888, through a task of recognizing connected Japanese

h signals. Th h b .
SPeeChL signals © Same pLONME Sequences can be vowel utterances. The experimental results show

ted t i tic ob ti by differ-
CONVETLEQ 1o varlous acoustic observations by citier that BD and KL have the best performance among

. kers he s . k if-
ent bpe?_i ers and by the same spea er but at di the measures compared. A portion of this work will
ferent times. Modern speech recognition methods appear in [11]
deal with these variations mainly by taking advan- '

tage of statistical methods (such as GMM, HMM) to

2 Invariance of f-divergence
model the distributions of data. These methods can

achieve relatively high recognition rates when using In this section, we give a brief introduction on
proper models and sufficient training data. How- f-divergence at first, and then discuss the invari-
ever, to estimate reliable distributions, these meth- ant property of f-divergence. In probability theory,
ods always require a large number of samples for ~ Csiszar f-divergence [9] (also known as Ali-Silvey
training. The successful commercial speech recog- distance [10]) measures the difference of two distri-
nition systems always make use of millions of data butions. Formally,
from thousands of speakers for training [1]. How- / pi(x)
iw(pi(z),pi(x)) = i(x dx, 1
ever, it is very different from children’s spoken lan- Jain (pi(), P4 () Pi(7)g( Dj (;v)) (1)
guage acquisition. A child does not need to hear the where p;(z) and p;(z) are two distributions on fea-
voices of thousands of people before he (or she) can ture space X. ¢ : [0,00) — R is a convex func-
understand speech. This fact largely indicates that tion and g(1) = 0. X can be an n-dimensional
there may exist robust measures of speech which are space with coordinates (z1, 2, ..., Z,). In this way,
nearly invariant to non-linguistic variations. It is by Eq. 1 is a multidimensional integration and dz =
these robust measures, we consider that young chil-  dz,dx,...dx,,. Many well known distances and diver-
dren can learn speech by hearing very biased train- gences in statistics and information theory such as
ing data called “mother and father”. KL-divergence, Bhattacharyya distance, Hellinger
Recently, Minematsu found that Bhattacharyya  distance etc., can be seen as special cases of f-
distance (BD) is invariant to transformations (linear divergence.
or nonlinear) on feature space [2, 3], and proposed Consider two distributions p;(x) and p;(x) in fea-
an invariant structural representation of speech sig- ture space X (x € X). Let h : X — Y (linear or
nal. Our previous works have demonstrated the ef- nonlinear) denote an invertible mapplng (transfor-
fectiveness of invariant structural representation in mation) function, which convert z into new feature
both speech recognition task [4, 5, 6] and computer y. In this way, distributions p;(x) and p;(z) are
aided language learning (CALL) systems [7, 8]. transformed to ¢;(y) and ¢;(y) (Fig. 1), respectively.
There is a question: are there invariant measures We wish to find measures f invariant to transfor-
other than BD, or, more generally, which kind of mation h, f(p:,p;) = f(q,q;). The invariant mea-
measures can be invariant? In this paper, we show  gsures can serve as robust features for speech analysis
that f-divergence [9, 10] provides a family of in-  and classification. We have the following theorem as
variant measures and prove all invariant measures shown in Fig. 1.

of integration type must be written in the form of
. & P . L Theorem 1 The f-divergence between two distri-
f-divergence. f-divergence family includes many ) o . . . )
] . o ) butions is invariant under invertible transformation
famous distances and divergences in information
h on feature space X,

faiv(Pi(7),pj (%)) = faiv(2i(y), q;(y))- (2)
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and statistics, such as, Bhattacharyya distance, KL-
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Fig. 1 Invariance of f-divergence.

Let F : R — R denote any real value function.
It is easy to see that F'(fa(pi(z),pj(x))) is also in-
variant to transformation. In the next, we consider
a more general form of Eq. 1, M(p;(z),p;(z)) =
[ pj(x)G(pi(z),p;j(z))dz, which we call integration
measure. There is a question, whether or not there
exist invariant integration measures other than f-

divergence? The answer is NO.

Theorem 2 All the invariant integration measures

have to be written in the form of [ p, (m)g(%)dw.

Theorem 1 and Theorem 2 together show the
sufficiency and necessity of the invariance of f-
divergence. We can generalize the invariant mea-
sure from two distributions to n distributions. Us-
ing the similar analysis of the proofs for Theorem 1

and Theorem 2, we have,

Theorem 3 The invariant measure for n distribu-
tions p1(x), p2(x), ..., pn(x) have and must have the

following F-measure form

Dr(p1(x), p2(2); .. (@) =

[patarp 8 B P,

pa(x)’ p3(x Pn(T)

(4)

where F R*! — R
divergence may not be a metric, since it may
not satisfy symmetry rule (fuio(pi(z),p;(x)) #
faiw(pj(z),pi(x))) and subadditivity triangle in-
equality (faiv(Pi(2),p;(2)) + fain(pj (@), pr(x)) <
faiv(pi(z), pr(x))). But there exist special forms of

Generally, f-

f-divergence, which is also a metric. Hellinger dis-
tance is such an example, HD(p;,p;) = [(v/pi(x) —

p;(z))?dz. More generally, it was shown that a
subclass of f-divergence, named fg-divergence, also

satisfies the constraints of metric [12].

3 Calculation of f-divergence

There is a problem of how to calculate f-
divergence. Unfortunately, in general cases, there
exists no closed-form solution for f-divergence of Eq.

1. In the next, we will discuss several techniques to
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calculate f-divergence for general cases and for a few

special types of distributions.

3.1 Calculation of

Monte-Carlo sampling

f-divergence using

Since the direct calculation of f-divergence is in-
tractable, we can consider approximate methods
based on Monte-Carlo sampling [13]. This method
draws a set of independent samples {z*}X | from
the distribution p;(z) at first. Assume K is large
enough. Then, f-divergence can be approximated
by

fa(pi(),pj(z)) ~ "

But this can be always computationally expensive.
Especially when x has a high dimension, we need a
huge number of random vectors for approximating

f-divergence.

3.2 f-divergence of Gaussian distributions

When the distributions are Gaussian, there may
exist closed-form solutions. Assume p;(x) and p;(x)
are two Gaussian distributions with mean p; and
i; and covariance matrix ¥; and ¥;, respectively.

Some examples are given as follows,
1) Bhattacharyya distance:
IS >

BD(pi(2), (@) = ¢ (s = 1) (Z50) " i = )

8
1 i +%5)/2
+7log7|( 11/2 ]){/L.
207 B2y
2) KL divergence:

KL(pi(z),pj(x)) =
1 %51

5 (og =il (S50 + (g — ) T (g — ). (T)

(6)

3) Hellinger distance:
HD(pi(z),p;j(x)) = 1 — exp(=BD(pi(z),p;j(x))). (8)

3.3 f-divergence of Gaussian mixtures

When p;(z) and p;(z) are Gaussian mixtures,
there exist fast approximation techniques other
than Monte Carlo sampling. For example, one
can use unscented transform [14, 15] to calculate
the f-divergence. Let Gaussian mixture p;(z) =
et Wi N (@]t Son)-

bution N (z|gm, Xm), we can calculate a set of 2n

For each Gaussian distri-

“sigma” points as

2P = i + /AR UE (9)
xicvj-n = Hm — )‘fntim (10)

where (k = 1,2,...,n), Ak, and UL are the k-th
eigenvalue and eigen vector of ¥,,, respectively. It is
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Fig. 2 An examples of a set of sigma points.

not hard to see that these points could capture the

mean and covariance information of N (Z|tm, Xm)-

Examples of sigma points are depicted in Fig. 2.
Using unscented transform, f-divergence can be

approximated by the following formula,

M 2n

(zF
faiv(pi(2), pj(z)) ~ L Z wng(pl‘( m))

Although the above calculation resembles the
Monte-Carlo sampling, it doesn’t require random
sampling, and it only needs a small number of
points. Therefore, it is much faster than the Monte-
Carlo sampling. One may also consider the vari-
ational approximation techniques to calculate the

f-divergence between two Gaussian mixtures [16].

4 Invariant structural representation
using f-divergence

f-divergence can be used to construct the invari-
ant structural representation of a pattern. Consider
pattern P in feature space X. Suppose P can be de-
composed into a sequence of m events {p; }/,. Each
event is described as a distribution p;(x). We calcu-
late the f-divergence df; between two distributions
pi(z), p;j(x), and construct an m x m divergence ma-
trix DY with DP (i, j) = df; and D (i,i) = 0. Then
DT provides a structural representation of pattern
P. Assume there is a map f : X — Y (linear or
nonlinear) which transforms X into a new feature
space Y. In this way, pattern P in X is mapped to
pattern @ in Y, and event p; is transformed to event
¢;. Similarly, we can calculate structure representa-
tion D? for pattern Q. From Theorem 1, we have
that DY = DP, which indicates that the structural
representation based on f-divergence is invariant to
transformations on feature space.

In the next, we describe a brief introduction on
how to obtain a structural representation from an

utterance [2, 4]. As shown in Fig. 3, at first, we
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1. Utterance waveforms 4. f-divergences
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Fig. 3 Framework of structure construction.

calculate a sequence of cepstral features from input
speech waveforms. Then an HMM is trained based
on that cepstrum sequence and each state of HMM
is regarded as event p;. Thirdly we calculate the f-
divergences between each pair of p; and p;. These
distances will form an m xm distance matrix D with
zero diagonal, which is the structural representation.
For convenience, we can expand D into a vector z
with dimension m(m — 1). If the f-divergence used
satisfies the symmetry rule fu(pi, pj) = faiv(Pj, i)
(for examples, Bhattacharyya distance, Hellinger
distance, total variations), D is a symmetric matrix.
In this case, we only need use the upper triangle of D
and z has dimension m(m—1)/2. The Euclidean dis-
tance between two structural representations serves
as a matching score of utterances. It is shown that,
using structural representation, we can approximate
the difference without explicitly estimating transfor-

mation parameters [17].

5 Experiments

To compare the performance of various forms of
f-divergence on speech recognition, we used the con-
nected Japanese vowel utterances [4] in experiments.
Each word in the data set corresponds to a combina-

tion of the five Japanese vowels ‘a’,‘e’,‘i’,‘0’ and ‘u’,
. . So there are totally 120

words. The utterances of 16 speakers (8 males and

such as ‘aeiou’,‘uoaie’, ..

8 females) were recorded. Every speaker provided 5
utterances for each word. So the total number of ut-
terances is 16 x120x5=9,600. Among them, we used
4,800 utterances from 4 male and 4 female speakers
for training and the other 4,800 utterances for test-
ing. For each utterance, we calculate twelve Mel-
cepstrum features and one power coefficient. Then
HMM training is used to convert a cepstrum vector
sequence into 25 events (distributions). Since we
have only one training sample, we used an MAP-
based learning algorithm [18]. Each state (event)
of an HMM is described by a 13-dimension Gaus-

sian distribution with a diagonal covariance matrix.
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Table 1 Comparisons of recognition rates
Method NN NM GM RDSA
Bhattacharyya dis. | 93.0% | 95.6% | 96.4% | 98.2%
Hellinger dis. 89.0% | 95.1% | 56.6% 96.0%
symmetric KL-div. | 93.2% | 95.6% | 96.4% | 98.4%

Following [4], we divided the 13D cepstrum feature
steam into 13 multiple sub-streams and calculated
the structures for each sub-stream. So an utter-
ance is represented as a set of 25 x 24 x 13 = 7,800
edges. When using symmetric f-divergence, such as
BD and HD, only half of the edges (3,900) are nec-
essary. More details can be found in our previous
works [4, 5].

We calculate the structural representations by
using Bhattacharyya distance (BD), Hellinger dis-
tance (HD) and symmetric KL-divergence (SKL),
respectively. As for classification, we used the fol-
lowing classifiers: nearest neighbors (NN), near-
est mean (NM), Gaussian distribution model (GM)
and random discriminant structure analysis (RDSA)
[5]. For NN and NM, Euclidean distance is used.
For GM, we used diagonal covariance matrices.
For RDSA [5], we used 20 randomly selected sub-
structures with each including 700 edges. The re-
sults are summarized in Table 1. We can find that
the performances of symmetric KL-divergence and
Bhattacharyya distance are similar. And Hellinger

distance has the lowest recognition rates.

6 Conclusions

One of the basic problems in speech recognition is
to deal with the non-linguistic variations exhibited
by speech signals. Recently, an invariant representa-
tion for speech has been proposed for speech recogni-
tion, which is composed by Bhattacharyya distances
invariant to transformation. So there is a question
which kind of measure can be invariant. This pa-
per proves that f-divergence between two distribu-
tions yields a family of measures invariant to invert-
ible transformation (linear and nonlinear) on feature
space, and shows all invariant integration measures
have to be written in the form of f-divergence. We
discuss how to calculate f-divergence for the gen-
eral case and for Gaussian and Gaussian mixture
distributions. We described a short review on how
to construct an invariant structural representation
of an utterance by using f-divergences. In the ex-
periments, we compare the performance of several

well-known forms of f-divergences through recog-
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nizing utterances of Japanese vowels. The results
show that Bhattacharyya distance and symmetric
KL-divergence achieve the best performance among
all the measures compared. It is noted that the in-
variance of f-divergence is very general, and doesn’t
limit to speech signal. The proposed theories may
have applications in other signal analysis and pat-

tern recognition tasks.
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