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1 Introduction

One of the basic problems in speech engineer-
ing is phoneme segmentation, that is, to divide a
speech stream into a string of phonemes. Automatic
Speech Recognition (ASR) models often require re-
liable phoneme segmentation in the initial training
phase, and Text-to-Speech (TTS) systems need a
large speech database with correct phoneme segmen-
tation information for improving the performance.
Human speech is a smoothly changing continuous
signal. Unlike written language, speech signals don’t
include explicit marks, such as space, for segmenta-
tion. Moreover, there usually does not exist abrupt
changes in speech signals due to the temporal con-
The difficulty of
phoneme segmentation comes from co-articulation

straints of vocal tract motions.

of speech sounds, where acoustic realization of one
phoneme may blend or fuse with its adjacent sounds.
This phenomenon can even exist at a distance of two
or more phonemes. All these facts make automatic
phoneme segmentation a challenging problem.
Previous approaches to phoneme segmentation
can be divided into two categories: supervised and
unsupervised segmentation. In the first case, both
the linguistic contents and the the acoustic models
of phonemes are available. Thus the segmentation
problem can be reduced to align speech signals with
a string of acoustic models. Perhaps the most fa-
mous approach of this category is HMM-based force
alignment [2]. The second category of method tries
to perform phonetic segmentation without using any
prior knowledge on linguistic contents and acoustic
models. The approach of this paper belongs to the
2nd class. The unsupervised segmentation is similar
to the situation that infants acquire speech [11]. In-
fants don’t have acoustic and linguistic models for
segmentation. However, psychological facts indicate
that infants become able to segment speech accord-
ing to acoustic difference between speech sounds and
cluster speech segments into categories [8]. It is only
by this procedure that infants can gradually con-
struct the speech model of their native languages.
Most of the previous approaches to this prob-
lem focus on detecting the change points of speech

stream and take these change points as the bound-
aries of phonemes. Aversano et. al [1] identified
the boundaries as the peaks of jump function. Du-
san and Rabiner [3] detected the “maximum spectral
transition” positions as phoneme boundaries. Este-
van et. al [4] employed maximum margin clustering
to locate boundary points. In our earlier work, we
formulated the segmentation problem into a proba-
bilistic optimization problem by using statistics and
information theory analysis [9], while the critical
question is how to evaluate the goodness of segmen-
tation. Generally speaking, a good segmentation
should minimize the within-phoneme variance while
In [9],
we have developed a simple objective function, the

maximize the between-phoneme variance.

Summation of Square Error (SSE). Our experimen-
tal results showed that minimizing SSE by Agglom-
erative Segmentation (AS) algorithm can achieve
better results than previous methods [1, 3, 4]. Al-
though this objective is computationally efficient,
SSE is based on Euclidean distance in cepstrum fea-
ture space and it is not known whether or not Eu-
clidean distance yields the best distance metric to
estimate the goodness of the segments. In fact, it
was shown that the weighted cepstral distance can
achieve better performance than Euclidean distance
for speech recognition [12]. A popular generaliza-
tion of Euclidean distance is Mahalanobis distance.
In this paper, we study whether and how Maha-
lanobis distance can be used to improve the perfor-
mance of segmentation. The essential problem here
is how to determine the parameters (covariance ma-
trix) for Mahalanobis distance calculation. We deal
with this problem in a learning based framework
and develop two criteria for determining the opti-
mal parameters. Their performances are compared
through experiments on TIMIT database. The ex-
perimental results indicate that the learning Maha-
lanobis distance can help to improve the segmenta-
tion results.

2 Optimal Segmentation

In this section, we introduce the notations and
give a brief review of our previous work on opti-
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mal segmentation [9]. Let X = x,z9,...,

note a sequence of mel-cepstrum vectors calculated

T, de-

from an utterance, where n is the length of X
and w; is a d-dimensional vector [z},z2,..,zd]T.
The objective of segmentation is to divide sequence
X into k non-overlapping contiguous subsequences
(segments) where each subsequence corresponds to a
phoneme. Use S = {s1, $a, ..., Sk} to denote the seg-
mentation information, where s; = {c;,¢;+1,...,e;}
(c; and e; denote the start and end indices of the j-
th segment.). Let X, .., (or X,,) represent the j-th
segment Te;, Le; 41, -+, Le; - Its size is |sj| isej—s;+1.
For speech signals, it is natural to make the
assumption that acoustic observations of each
phoneme is generated from an independent source.

Let R = {ri,72,...,
quence, and p(z;|r;) represent the probability model

ri} denote the phoneme se-

of observing x; given source ;. Thus we have,

k€
H Hp $Z|’I“] = H H p(xi|Tj)'

j=lie€s; j=li=c;
(1)

Using maximum likelihood estimation (MLE), the

p(X|S, R)

optimal segmentation can be formulated as

§ = argmin{~log(p(X|S, R)}  (2)

Like most speech applications, we assume that 7;
is a multi-variable normal distributions whose mean
and covariance matrix are denoted by m; and X;.
If segmentation s; is given, we can estimate the pa-
rameters by MLE. Using the estimated #; (fnj,ilj)
of m; and X¥;, Eq. 2 becomes,

—logp(X|S, R) ZZ log(p(z;|r;))
j=1li=c;
nd 1 nd
=5 log(27) + 5 ; |s;j|log det(X;) + -5 (3)

It can be shown that the above Equation is in co-
ordinate with the minimum description length prin-
ciple (MDL) [10].
proach may have problem: a phoneme usually only

However, in practice, this ap-

consists of a small number of frames, which makes
it difficult to estimate reliable covariance matrix 3.
Especially, when the number of frames is less than
d, the covariance matrix is singular and |f]| =

To deal with this difficulty, we consider to fix the
covariance matrix 3 as an unit matrix I and only
estimate mean m; = 1/[s;|>

ves; - In this way,
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Eq. 2 becomes,

. nd
—logp(X|S,R) = —log (2m)

ZZII%—mJII2
j 1i=c;
(4)

Note only the second item is influenced by segmen-
tation S. Thus the problem is equal to minimizing
the following Summation of Square Error function

(SSE),

fsse(X,S)

ZZII%—WII2 (5)

j=1li=c;

The above formula is the same as the objective func-
tion of k-means clustering (Chapter 3.5 [7]). The dif-
ference between our problem and k-means is that k-
means needs not consider the time constraint, which
is important for phoneme segmentation.

In [9], we introduce the Agglomerative Segmenta-
tion (AS) algorithm, which begins with each frame
as a segment and merge two consequtive segments
into one successively in a greedy way. The algorithm
has a time complexity of O(n). We also proposed an
efficient implementation of this algorithm by using

integration functions.

3 Weighted and Transformed Cep-
stral Features

The SSE objective Eq. 5 is based on simple Eu-
clidean distance, where each dimension of cepstrum
features is treated equally and the correlation be-
tween these features are ignored. However, in real
problems, the cepstrum features can be correlated
and different features may have different weights
for segmentation. The Euclidean distance comes
from the use of I as covariance matrix. We may
Let ¥ denote

a full rank covariance matrix. Euclidean distance

consider other covariance matrix.

x; — x;||* can be generalized to Mahalanobis dis-
J
(x; — xj).

In this way, we can define a Mahalanobis distance

tance (z; — ;)7L 1

based objective function as follows,

ZZ z; — ;) TSy

j=li=c;

fup(X,S,) —my;).

(6)

If ¥ is a diagonal matrix, this is equal to putty
weights on cepstrum features,

k €j d
=3 we(a? =2, (1)

j=1li=c; q=1
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where w, denotes the weight of g-th cepstrum fea-
ture. If ¥ is not diagonal, we can apply eigen-
UTAU , where U consists
of the eigen vectors and A is a diagonal matrix whose
Then,
Eq. 5 can be written into the SSE function on trans-

decomposition on it : ¥ =
diagonal components are the eigen values.

formed cepstrum features Az:

Z Z ||Az; — AmJHQ (8)

j=li=c;

fup(X,S,)

where the transformation matrix A = A~1/2U. It is
easy to examine that ATA =¥~

In classical Mahalanobis distance, ¥ is estimated
as the covariance matrix of the total data

n

Y= - Z(ml —m)(z; —m)T, (9)

i=1

where mean m = ", z;/n. However, this calcula-
tion only considers the statistical characteristics of
the whole data. We are more interested in a distance
metric which is small enough for cepstral featurs
within the same phoneme while keeps large enough
In the

following, we will study this problem in a learning

for cepstral featurs of different phonemes.

framework. By limiting to Mahalanobis distance,
the objective of learning is to estimate covariance
matrix X. Suppose there exists a set of training ut-
terances D with labeled phoneme boundaries. We
are going to develop two criteria which minimize
the feature variance within the same phoneme and
(or) maximizes feature variance between different

phonemes. Assume |X| =1 to avoid scaling factors.

3.1 Criterion 1: Minimization of Summa-

tion of Variance

The first objective is to minimize the summation
of variances within phonemes. Mathematically, this
can be formulated as

mlnzzz i — )T

XeD j=1li=c;

- ’I’h]‘), (10)

where 70; is the mean of the j-th segment in utter-
ance X. Define within-phoneme variance matrix

5= Y Y S

X€eD j=1i=c;

—m;)T. (11)

Using matrix calculation, the optimal X can be cal-
culated as

1

Bl )

XMsv =
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3.2 Criterion 2: Maximization of Discrimi-
nant Variance

In Eq. 10, we only consider the within phoneme
variances. we consider the variance of two adjacent
phoneme into the second objective function, that is,
to maximize the ratio of between phoneme variances
Sp to within phoneme variances S,,. Formally, we

have,

k—1e€j+1

max Z ZZ(x

XeD j=1 i:cj

Inm Z ZZ z; — )Y @ —my),  (13)

XeD j=1i=c;

i — M) ST (@ — iy )

where 1 41 is the mean of the j-th and the j+1-th
segment in X. It is noted that we only consider the
between variances of two adjacent phonemes (in the
numerator of Eq. 13). This is because, for phoneme
segmentation, the same phoneme may appear more
than one time in a single sequence.

Define between-phoneme variance matrix as

k—1¢€j+1

Si=23.2.> (@

XeD j=1i=c;

i — 1y p1) (s — )T

(14)
[6] showed an solution of Eq. 13 as
) = ;S 1SwSy (15)
MDV 5s 5—1‘1/d
b Pwdp

We calculated global covariance matrix ¥ by Eq.
11 and
between-phoneme matrix S, by Eq. 14 of the utter-
ances in TIMIT database. We found that the main
energy is located in the diagonal for all three matri-

9, within-phoneme matrix S,, by Eq.

ces. Fig. 1 shows the diagonal components of them
(the summation are normalized to one). It can be
seen that generally the variance decreases as dimen-
sion index increases, however the curve of S, shows a
vibration pattern. The curve of S, decreases slowly
than that of 3. Usually, the larger the variance is,

the small the weight of corresponding feature is.

4 Experiments

We use the training part from the TIMIT Ameri-
can English acoustic-phonetic corpus [5] to evaluate
and compare the proposed objective functions. The
database includes 4,620 sentences from 462 Ameri-
can English speakers of both genders from 8 dialec-
It includes more than 170,000 bound-
aries, totally. The sampling frequency is 16kHz.

tal regions.
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Table 1 Recall rates of sequence segmentation

Method | ED MD MSV | MDV
20ms | 76.8% | 73.6% | 77.7% | 77.6%
30ms | 87.1% | 86.3% | 88.2% | 87.9%
40ms | 92.4% | 92.9% | 93.7% | 93.5%

For each sentence, we calculate the spectral fea-
tures from speech signals by 16ms Hamming win-
dows with 1ms shift, and then transform spectral
features into 12 mel-cepstrum coefficients (exclud-
ing the power coefficient).

We make comparisons between Euclidean distance
(ED) and the classical Mahalanobis distance (MD)
(Eq. 9) and the Mahalanobis distance using learn-
ing parameters MSV (Eq. 12) and MDV (Eq. 15)
for segmentation. The agglomerative segmentation
(AS) algorithm [9] is used to find the optimal seg-
mentation. The stop number of the AS algorithm
is set as the number of phonemes in a sentence.
Among all 4,620 sentences, we randomly select 56
sentences for learning the covariance matrix of MSV
and MDV. And the other sentences are used for
evaluation. For each method, we count how many
ground truth boundaries are detected within a toler-
ance window (20~40ms). The recall rate is adopted
as a comparison criterion,

number of boundaries detected correctly

Recall rate =

5 Conclusions

This paper addresses the unsupervised segmen-
tation problem by using learning Mahalanobis dis-
tance. We develop two optimization -criteria,
namely, MSV and MDV. MSV minimizes the sum-
mation of variance withing phonemes, and MDV
tries to maximize the ratio of the variance between
phonemes to the variance within phonemes. Both
these criteria can lead to close form optimal solu-
tions by using matrix calculation. We carried out
experiments on the TIMIT database to compare the
proposed methods. The results indicate that the use
of learning Mahalanobis distance can improve the
segmentation performance.
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