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無作為判別構造解析を用いた日本語母音連結発声の自動認識
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あらまし 音声信号は様々な非言語的要因により変化し，音声認識システムはそれらに対処する必要がある．多くの

非言語的変動は特徴量空間の変換により表現することができる．音声の構造的表象は特徴量空間の変換に対して不変

であることが示されており，非言語的変動に対して頑健な音声認識が可能となる．しかし，構造的表象はその高い次

元性が問題となる．これにより計算量が増えるだけでなく次元の呪い（curse of dimensionality）の問題も生じる．本

研究では，この問題を解決する手法として Random Discriminant Structure Analysis（RDSA）を提案する．本手法

は特徴量選択と判別分析とを用いることにより，高い次元性を持つ構造的表象のパラメータから冗長性を削減し，よ

り低い次元の識別的な特徴量を計算する．さらに識別的特徴量を用いて複数の識別器を学習し，それらを統合するこ

とによって最終的な識別結果を出力する．連続的に発声された日本語 5母音系列をタスクとした認識実験において，8

名の話者により学習した提案手法は 98.3% の認識率を示し，4,130名による不特定話者 HMM（97.4% ）を上回る性

能を示すことを確認した．

キーワード 無作為判別構造解析, 音声の構造的表象，音声認識，日本語母音系列
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Abstract Automatic speech recognition has to deal with the non-linguistic variations of speech signals. Many

non-linguistic variations can be modeled as the transformations of features. The universal structure of speech [12],

[13], proves to be invariant to the feature transformations, and thus provides a robust representation for speech

recognition. One of the difficulties of using the structure representation is due to its high dimensionality. This not

only increases computational cost but also easily suffers from the curse of dimensionality [3], [8]. In this paper, we

introduce Random Discriminant Structure Analysis (RDSA) to deal with this problem. Based on the observation

that structural features are highly correlated and include large redundancy, the RDSA combines random feature

selection and discriminative analysis to calculate several low dimensional and discriminative representations from an

input structure. Then an individual classifier is trained for each representation and the outputs from each classifier

are integrated for the final classification decision. Experimental results on connected Japanese vowel utterances

show that our approach achieves a recognition rate of 98.3% based on the training data of 8 speakers, which is

higher than that (97.4%) of HMMs trained with the utterances of 4,130 speakers.

Key words random discriminant structure, structural representation of speech, speech recognition, Japanese
vowel sequences

1. Introduction

Speech signals inevitablely exhibit non-linguistic varia-

tions, such as speaker,s communication channels, micro-

phones and so on. One of the fundamental problems in

speech recognition is to deal with these non-linguistic vari-

ations. Modern speech recognition studies largely make use

of the statistical methods, for example GMM and HMM,
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to solve this problem, which try to model the distributions

of speech signals [4]. Extensive studies have shown that the

statistical methods can achieve comparably high recognition

rates when using proper models and sufficient training data.

However, one of the disadvantages of these methods is that

a large number of training samples must be prepared to

estimate reliable distributions. The successful commercial

speech recognition systems always make use of millions of

data from thousands of speakers for training [7]. Contrary to

this is human perception of speech. Thinking, a child doesn’t

need to hear the voice of thousands of persons before he (or

she) could understand speech. This fact largely indicates

that there may exist a robust representation of speech which

is nearly invariant to non-linguistic variations. It is by this

robust representation, we consider that children can learn

speech with very biased training data called “mothers and

fathers”. This fact is also partly supported by recent ad-

vance in the neuroscience, which shows that the linguistic

aspect of speech and the non-linguistic aspect are processed

separately by the auditory cortex [18].

Along this line, the third author of this paper proposed

a universal structure theory [12], [13] for speech, and proved

that the structural representation is invariant to transforma-

tions (linear or nonlinear) in feature space [14]. To obtain

a structural representation, an utterance is converted to a

sequence of distributions (called events); then the structural

representation is calculated as the Bhattacharyya distance

matrix of these events. Our previous works [1], [15] have pre-

liminarily exhibited the effectiveness of the structural rep-

resentation in speech recognition. However, there is a dif-

ficulty for using the structural representation in recognition

tasks: the dimensionality of structural representation is usu-

ally high. Let m denote the number of events in a structure.

The dimensionality of the structural representation will be

O(m2). It is well-known that the high dimensionality of in-

put feature not only increases the computational time, but

also makes it difficult to train robust classifiers (known as

the curse of dimensionality [3], [8]). Moreover, we find that

the structural features are highly related to each other and

there exists large redundancy among them. Therefore, it is

necessary to reduce the dimensionality for obtaining a more

compact and discriminative representation.

This paper proposes Random Discriminant Structure

Analysis (RDSA) for the structure-based speech recognition.

Our approach makes use of random feature selection to pre-

liminarily reduce the dimensionality of structures. The dis-

criminative features are found as those with the largest ratios

of between-class variance to within-class variance through

Fisher Discriminant Analysis (FDA). The random feature

selection can help to circumvent the overfitting and singu-
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図 1 Invariance of Bhattacharyya distance.

larity problems of FDA. The classifier ensemble can reduce

the variance and bias of single FDA classifier, thus to im-

prove the recognition performance. Experimental results on

connected Japanese vowel utterances show that our approach

can achieve a recognition rate of 98.3% based on the training

data of 8 speakers. This is higher than the recognition rates

of all compared methods and than that (97.4%) of HMMs

trained with 4,130 speakers. More details will appear in a

coming conference paper [17].

2. Invariant Structure for Speech Repre-
sentation

In this section, we will give a brief overview on invariant

structure theory and on how to calculate structure represen-

tations from utterances [12], [13].

2. 1 Theory of Invariant Structure

Consider feature space X and pattern P in X. Suppose

P can be decomposed into a sequence of m events {pi}m
i=1.

Each event is described as a distribution pi(x) in feature

space. Note x can have multiple dimensions. Assume there

is a map f : X → Y (linear or nonlinear) which transforms

X into a new feature space Y . In this way, pattern P in X

is mapped to pattern Q in Y , and event pi is transformed to

event qi. Thus if we can find invariant metrics in both space

X and space Y , these metrics can serve as robust features

for classification.

The universal structure theory shows Bhattacharyya dis-

tance (BD) between two distributions is an invariant metric

Fig.1. BD is defined as,

BD(pi, pj) = − ln

Z

(pi(x)pj(x))1/2dx. (1)

It is not difficult to calculate that under transformation f ,

distribution qi(y) can be expressed by,

qi(y) = pi(f
−1(y))|J(y)|, (2)

where f−1 denotes the inverse function of f , and J is the

Jacobian matrix of function f−1. Then it can be proven

that [14],

BD(pi, pj) = BD(qi, qj). (3)

2. 2 Structuralization of an Utterance

In the next, we show how to calculate a structural repre-

sentation from an utterance. As shown in Fig. 2, at first,
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図 3 Utterance matching by shift and rotation.

we calculate a sequence of cepstrum from input speech wave-

forms. Then an HMM is trained based on a single cepstrum

sequence and each state of HMM is regarded as an event

pi. Thirdly we calculate the Bhattacharyya distances be-

tween each pair of pi and pj . These distances will form a

m×m symmetric distance matrix MBD with zero diagonal,

which can be seen as the structural representation. For con-

venience, we can expand the upper triangle of MBD into a

vector z of dimension m(m− 1)/2. It is easy to see that this

structural representation must be invariant to transforma-

tions in feature space.

It can be shown that many non-linguistic variances [12],

[13], such as the length of vocal tract [16], can be modeled as

the transformation of feature space. Suppose that X and Y

represent the acoustic spaces of two speakers A and B, and

P and Q represent two utterances of A and B, respectively.

Then f can be seen as a mapping function from A’s utter-

ance to B’s.In fact, this problem has been widely addressed

in the speaker adaption research of speech recognition and

the speaker conversion research of speech synthesis. In Max-

imum Likelihood Linear Regression (MLLR) based speaker

adaption [10], a linear transformation: y = Hx + d is used,

where H and d denote rotation and translation parameters

respectively. For matching utterances P and Q, the speaker

adaption methods need to explicitly estimate transformation

parameters (i.e. H and d), which lead to the minimum differ-
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図 4 Random discriminant structure analysis.

ence (Fig.3). This minimum difference serves as a matching

score of utterances. It has been shown that, using structural

representation, we can approximate the minimum difference

without explicitly estimating transformation parameters [13].

3. Random Discriminant Structure Anal-
ysis

One of the difficulties of using BDs for classification is its

high dimensionality. Let m denote the number of events.

Then, the dimensionality of structural representation will be

m(m− 1)/2. The high dimensionality will increase the com-

putational cost and make it difficult to train robust classifiers

(known the Curse of Dimensionality [8]). Moreover, the BDs

are highly correlated features (thinking dpi,pj can be largely

effected by dpi,pk and dpk,pj ). If we consider the space of BD

distances, only a small part (a low dimensional subspace)

of this high dimensional space should contain discriminative

information. Based on these observations, we think it is es-

sential to reduce the input structure into a compact (low

dimension) yet discriminative representation for obtaining a

better recognition rate.

In this paper, we will develop a method called Random

Discriminant Structure Analysis, which combines feature

selection and feature transformation for estimating a low-

dimensional discriminative representation of structures. This

method includes three steps. Firstly, we randomly sample

the edges from an input structure to obtain several random

sub-structures. Then discriminative analysis is applied on

each random sub-structure to train a classifier for that struc-

ture. Finally, the outputs of each classifier are combined to

reach the final decision. The flow chart of RDSA is shown in

Fig. 4. And the details will be explained as in 3. 1.

3. 1 Construction of Random Structure

In the first step, we construct K random sub-structures

{Ek}K
k=1 , each Ek is obtained by randomly sampling S edges

{ek
i }S

i=1 from E. This can also be seen as randomly selecting

a small number of dimensions from vector z. In the next,
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図 5 Recognition rates vs numbers of edges.

we will apply discriminant analysis on each sub-structure

Ek independently. The random sub-structure construction

can reduce the dimensionality of original structures while

the number of training data remains the same.

Here we use random feature selection instead of greedy

selection methods. This is because, our structural features

(BDs) are highly correlated features. The greedy selection

methods can only reach the local optimal combination of

some of the features, which makes it unsuitable for our task.

Moreover, our method includes a classifier ensemble strategy.

This requires the independence among individual classifiers,

which can be largely satisfied through random selection. The

efficiency of random feature selection in recognition had been

exhibited in [6]. It was shown in [19] that a random subspace

method (similar to random feature selection) is useful for

discriminant analysis . We found that only a small number

of edges can include sufficient information for an individual

discriminative analysis. This can be verified by our experi-

mental results given in Fig. 5 that shows the average recogni-

tion rates for using different number of edges (features). The

detailed setting of the experiments are described in Section

4. The original pattern includes 3,900 edges. It is easy to

see that when the number of edges is larger than 400 (about

10% edges), the increase of edge numbers in an individual

classifier cannot improve the recognition rates very much.

3. 2 Discriminant Analysis

We use Fisher Discriminant Analysis (FDA) for discrim-

inant analysis due to its simplicity and effectiveness. FDA

is a classical method to find the discriminant linear trans-

formation W of features z [3]: t = W T z, where t denotes

the discriminant features and usually has lower dimension

than z. Mathematically, this is achieved by maximizing the

following ratio (generalized Rayleigh quotient),

Ŵ = arg max
W

|W T SbW |
|W T SwW | , (4)

where Sb is the between-class scatter matrix, and Sw is the

within-class scatter matrix of features. Assume we have M

training samples {zi}M
i=1 belonging to N classes {Cj}N

j=1. Let

nj denote the number of training samples in Cj . Then Sb

and Sw can be calculated by the following equations:

Sw =
N

X

j=1

X

zi∈Cj

(zi − mj)(zi − mj)
T , (5)

Sb =

N
X

j=1

nj(mj − m)(mj − m)T , (6)

where mj is the mean of class Cj and m is the mean of all the

training samples. W can be computed as the eigenvectors of

S−1
w Sb. Once W is known, we can determine the discrimina-

tive features as W T z for sample z. For each random set Ek,

we apply FDA on it to obtain Wk. Then the nearest mean

classifier Fk can be built by using the discriminant features:

arg min
j

|W T
k zk − W T

k mk
j |, (7)

where zk denotes the distance vector of edges in Ek and mk
j

denotes the mean distance vector of edges in Ek for j-th

class.

FDA can be used to determine the discriminative struc-

ture. However, it is well-known that FDA may suffer from

overfitting when the dimensionality of the features is high

and the number of training samples is limited [3]. This fact

can influence the performance of FDA. Another serious prob-

lem of FDA is that the within-class scatter matrix Sw can be

singular and have no inverse. In our approach, these prob-

lems can be largely circumvented through the use of random

edge selection which reduces the dimensionality of input fea-

tures. The final performance is further improved through

classifier combination.

3. 3 Classifier Ensemble

In the final phase, we integrate the outputs from each

classifier to reach the final classification decision. It has

been shown that classifier ensemble is an efficient method

to reduce the variance and bias of an individual classifier [2].

There are two typical strategies for classifier ensemble: sum-

mation and voting. Assume the outputs of each individual

classifier is a vector containing the confidence score for each

category. For the summation method, the output vectors are

added together and the final class is decided as the one with

the highest summarized confidence. This can be expressed

by

arg min
j

X

k

|W T
k zk − W T

k mk
j |. (8)

In voting, the final decision is identified as the category sup-

ported by the largest number of individual classifiers. We ex-

perimentally compared the two ensemble methods and found

that summation has better performance. In the experiments,

we will use summation for classifier for ensemble without spe-

cial notification.
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4. Experiments

To examine the performance of random discriminant struc-

ture analysis, we use the connected vowel utterances [1] for

experiments. It is known that acoustic features of vowel

sounds exhibit larger between-speaker variations than conso-

nant sounds. The data used includes all combinations of five

Japanese vowels ‘a’,‘e’,‘i’,‘o’ and ‘u’, such as ‘aeiou’,‘aeiuo’, ...

. So there are totally 120 words. The samples of 16 speakers

(8 males and 8 females) are recorded. Every speaker pro-

vides 5 utterances for each word. So the total number of

utterances is 9,600. Among them, we use 4,800 utterances

from 4 male and 4 female speakers for training and the other

4,800 utterances for testing.

We calculate twelve Mel-cepstrum features and one power

feature for every frame of an utterance. HMM training is

used to convert cepstrum vector sequence into events (dis-

tributions). Since we have only one training sample, an

MAP-based learning algorithm [5] is adopted. The trained

HMM includes 25 states, and each state has a 13-dimension

Gaussian distribution with a diagonal covariance matrix.

Following [1], we divide a cepstrum feature steam into 13

multiple sub-streams, and calculate the structures for each

sub-stream. So an utterance is represented as a set of

25C2 × 13 = 3, 900 edges. More details can be found in our

works [1], [13]. We use a regularized version of Fisher discrim-

inant analysis (RDA) [11] to train an individual classifier of

each random structure. It can be shown that the regulariza-

tion can reduce the unfavorable effects of noisy samples and

overfitting problem.

4. 1 Experiment 1

In the first experiment, we examine the performance of

various numbers of edges used in sub-structures and various

numbers of discriminative classifiers. We set the numbers of

edges as 100, 200, 300, ..., and 2,000, and the numbers of

discriminative classifiers from 1 to 30. For each combination

of edge number and classifier number, we repeat the training

procedure 20 times to get 20 sets of RDSA classifiers（注1）and

calculate their average recognition rates.

The results are summarized in Fig. 6. It can be seen that

when the number of discriminative classifiers is larger than

10 and the edge numbers is larger than 300, the increase of

classifier number can only improve the recognition rates very

little. Also when edge number is larger than 700 and classi-

fier number is larger than 10, there is no improvement of the

recognition rates observed if we increase the edge numbers

（注1）：20 is a small number if we consider there exists millions of pos-

sible combination of edges and classifiers. However, due to the time

limitation, it is impossible for us to test the experiments on large

numbers.
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図 6 Recognition rate vs. number of edges.The black circle rep-

resent the highest recognition rate.

of individual classifier. In fact, as we can find in Fig. 6, the

highest average recognition rate is achieved when edge num-

ber equals to 700 and classifier equals to 22. This is because:

although, for an individual classifier, the addition of edges

can increase recognition rates, this may reduce the indepen-

dence among different classifiers and impair the performance

for classifier ensemble. These results indicate that we need

not to use a large edge number and a large classifier number

for achieving a good recognition rate. This is important in

practice, since for small edge number (1/4-th of all the edges)

and classifier number (about 20), we don’t have to do large

computation in both training and testing procedures.

4. 2 Experiment 2

We also make comparisons with other classical classifica-

tion methods: nearest neighbors (NN), nearest mean (NM),

Gaussian distribution model (GM) and Mahalanobis dis-

tances (MD). For nearest neighbors and nearest mean, Eu-

clidean distance is used. For Gaussian distribution and Ma-

halanobis distances, we use diagonal covariance matrices.

The results of using 8 speakers’ data for training are summa-

rized in table 1. We can see the proposed method achieves

the highest recognition rate. We also examine the effect of

using smaller numbers of speakers for training data. We

randomly selected k (1 <= k <= 7) speakers from the 8 train-

ing speakers and use their data for learning the classifiers.

For each k, we repeat this procedure 8 times and calculate

their average performance. Note that testing data are the

same and no testing data is used in training. For all the

experiments, the proposed method always has the best per-

formance and is less influenced by the reduction of training

speakers. With the training utterances from only 5 speak-

ers, the proposed RDSA can achieve a higher recognition

rate than that of HMM (97.4%) trained by the utterances of

4,130 speakers [9]. (HMM trained by the 260-speakers has a
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表 1 Comparisons of recognition rates. The 2nd row shows the

numbers of training speakers. The first five methods use the

structural representation as input.

method NN NM MD GM RDSA HMM

#speaker 8 4,130

rate 93.1% 95.2% 94.1% 96.2% 98.3% 97.4%
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図 7 Comparison of the recognition rates among different meth-

ods and different numbers of speakers in training data

recognition rate of 82.1%.) Two facts should be noted here.

1) The structural representations are reliable features, since

the simple classifiers such as nearest neighbors and nearest

mean can achieve relatively high recognition rates with lim-

ited training data. 2) The reduction of training speakers can

lead to significant decrease of recognition rates. This means

that we still depend on sufficient training data (although it is

much less than that of HMM in our experiments) for achiev-

ing a good performance.

5. Conclusions

This paper proposed a novel method, Random Discrim-

inant Structure Analysis (RDSA) for universal structure

based speech recognition. RDSA has the advantages of ran-

dom structure construction, discriminant analysis and classi-

fier ensemble. Compared with the original structural repre-

sentation, the representation calculated by RDSA has lower

dimensions and is more discriminative. It also preserves the

desirable invariant property of input structure. In RDSA,

the random structure construction can circumvent the over-

fitting and singularity problem of FDA. For classification,

RDSA makes use of discriminant analysis and classifier en-

semble to improve the recognition rates. In the experiments,

the proposed method achieved a recognition rate of 98.3% on

the connected vowel utterances based on the training speech

of 8 speakers, which is higher than all compared methods,

and the HMM trained by the utterances of 4,130 speakers.

The proposed method is more robust to the reduction of the

numbers of training speakers. For future work, we are con-

sidering to develop a mechanism which can integrate edge se-

lection and classifier ensemble in a more effective way, and to

evaluate the proposed methods on larger utterance databases

that includes both vowels and consonants.
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