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教師なし音素セグメンテーションの最適化に関する理論的・実験的考察
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あらまし 音素セグメンテーションは，音声認識や音声合成における基本的な問題である。しかしながら，言語情報

や音響モデルに関する知識を全く用いない教師なし音素セグメンテーションは，非常に難解な問題として挙げられる。

その本質的問題は「どうのように最適な分割を定義する か」である。本論文では，最適な分割を確率的な枠組みで定

式化する。統計分析と情報理論を用いて、最適化対象として三つの目標関数を提案する：Mean Square Error (MSE),

Log Determinant (LD) and Rate Distortion (RD)。特に RD関数は、情報レート歪み理論に基づいて定義されてお

り、人間の言語知覚メカニズムと関連性を見いだすことができる。さらに，RD関数を用いて，最適な分割が直交変換

に対して不変性をもつことを証明した。また，提案された目的関数を最適化するため、時間制約付きの agglomerative

clustering アルゴリズムを使用した。そこでは、積分関数を使用することによって効率的なアルゴリズムの実装手法を

提案した。 本実験では，TIMITデータベースを用いて，提案した目標関数の評価実験を行なった。 Rate Distortion

が最良の音素検出性能を示し (recall rate 79.1% in 20ms tolerance windows），それは近年発表された教師なしセグメ

ンテーション手法 [1], [4], [5]と比較して，より良い結果を示している。
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Toward Optimal Unsupervised Phoneme Segmentation

-A Theoretical and Experimental Investigation

Yu QIAO†, Naoya SHIMOMURA†, and Nobuaki MINEMATSU†

† Grad. School of Frontier Sciences, Univ. of Tokyo, 5–1–5, Kashiwanoha Kashiwa, Chiba, 277–8561 Japan
E-mail: †{qiao,shimo,mine}@gavo.t.u-tokyo.ac.jp

Abstract Phoneme segmentation is a fundamental problem in speech recognition and synthesis studies. Unsu-

pervised phoneme segmentation assumes no knowledge on linguistic contents and acoustic models, and thus poses

a challenging problem. The essential question behind this problem is how to define the optimal segmentation. This

paper formulates the optimal segmentation based on a probabilistic framework. Using statistics and information

theory analysis, we develop three optimal objective functions, namely, Mean Square Error (MSE), Log Determinant

(LD) and Rate Distortion (RD). Specially, RD objective function is defined by using information Rate Distortion

theory and can be related to human speech perception mechanisms. And we prove that the optimal segmentation of

RD is invariant to orthogonal transformation. To optimize the proposed objective functions, we use time-constrained

agglomerative clustering algorithm. We also propose an efficient method to implement the algorithm by using inte-

gration functions. We carry out experiments on TIMIT database to compare the above three objective functions.

The results show that Rate Distortion achieves the best performance (recall rate 79.1% in 20ms tolerance windows)

and indicate that our method outperforms the recently published unsupervised segmentation methods [1], [4], [5].

Key words unsupervised phoneme segmentation, optimization, rate distortion

1. Introduction

Many speech analysis and synthesis applications depend

on segmentation to divide speech signals into phonetic seg-

ments (phonemes and syllables) [6]. Unlike written language,

speech signals do not include explicit space for segmentation.
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Moreover, human speech is smoothly continuous signal and

does not change abruptly due to the temporal constraints

of vocal tract motions. All these facts make segmentation a

difficult question.

In speech engineering, Automatic Speech Recognition

(ASR) models often require reliable phoneme segmentation

in the initial training phases, and Text-to-Speech (TTS) sys-

tems need large speech database with phoneme segmentation

information for improving the performances. Although man-

ual segmentation can be precise, it is heavily time and energy

costly [15], [17]. Partly for this reason, phoneme segmenta-

tion has received large research interests. The approaches to

phoneme segmentation can be divided into two classes. The

first class requires the linguistic contents and the acoustic

models of phonemes. The segmentation problem is usually

converted to the alignment of speech signals with given texts.

Perhaps the most famous method of this class is the HMM-

based forced alignment [2], [17].

Another class of method tries to perform phonetic seg-

mentation without using any prior knowledge on linguistic

contents and acoustic models. This is also known as unsu-

pervised segmentation. The approach of this paper belongs

to the 2nd class. The unsupervised segmentation is simi-

lar to the phenomenon that an infant perceives speech [14].

Most of the previous approaches to this problem focus on

detecting on the change points of speech signals and take

these change points as the boundaries of phonemes. Aver-

sano et. al [1] defined “jump function” to capture the changes

in speech signals and identified the boundaries as the peaks

of jump function. Dusan and Rabiner [4] detected the “max-

imum spectral transition” positions as phoneme boundaries.

Estevan et. al [5] employed maximum margin clustering to

locate boundary points.

Different from these change point detection methods, this

paper tries to solve phoneme segmentation problem by an-

swering the essential question behind: what kind of segmen-

tation is optimal. In other words, we want to find objective

functions to evaluate the goodness of segmentations. This is

a hard problems as we have neither information on the cat-

egories of the phonemes nor prior knowledge on phonemes’

acoustic models. Formally, we will formulate the segmenta-

tion problem in a probabilistic framework. Using statistics

and information theory, we develop three objective functions,

namely, 1) Mean Square Error (MSE), 2) Log Determinant

(LD) and 3) Rate Distortion (RD). Specially, RD objective

function is defined based on information rate distortion the-

ory and can be related to human speech perception mecha-

nism. To optimize the proposed objective functions, we use

time constrained agglomerative clustering algorithm. We de-

velop an efficient implementation based on the integration
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図 1 Diagram of Segmentation Model.

functions, which can largely reduce the computational time.

The proposed three measures are compared through exper-

iments on TIMIT database. Rate Distortion achieves the

highest recall rate among the three objective functions. Our

rates are also better than the recently published results on

unsupervised phoneme segmentation [1], [4], [5].

2. Formulation of Optimal Segmentation

Let X = x1, x2, ..., xn denote a sequence of mel-cepstrum

vectors calculated from an utterance, where n is the length

of X and xi is a d-dimensional vector. The objective of

segmentation is to divide sequence X into k non-overlapping

contiguous subsequences (segments) where each subsequence

corresponds to a phoneme. Use S = {s1, s2, ..., sk} to denote

the segmentation information, where sj = {cj , cj + 1, ..., ej}
(cj and ej denote the start and end indices of j-th seg-

ment.). Let Xcj :ej (or Xsj ) represent the j-th segment

xcj , xcj+1, ..., xej (Fig. 1). Size of segment |sj | = ej − sj +1.

Without any constraint, there will be n−1Ck−1 possible cases

of segmentation.

For speech signals, it is natural to make the assumption

that each individual phoneme is generated by an indepen-

dent source. Let R = {r1, r2, ..., rk} denote the phoneme

sequence, and p(xi|rj) represent the probability model of ob-

serving xi given source rj (Fig. 1). Thus we have,

p(X|S, R) =

k
Y

j=1

Y

i∈sj

p(xi|rj) =

k
Y

j=1

ej
Y

i=cj

p(xi|rj). (1)

In the next sections, we will deduce three optimal objective

functions for unsupervised phoneme segmentation.

2. 1 Mean square error and log determinant

Using maximum likelihood estimation (MLE), the optimal

segmentation can be formulated as

Ŝ = arg min
S

{− log(p(X|S, R))} (2)

If the source sequence R is known, it is not hard to see that

the above problem can be solved by Viterbi decoding or dy-

namic programming [15]. However, in unsupervised segmen-

tation, we have no knowledge on R . To handle this difficulty,

we need to make assumptions on the source distributions rj .

Like most speech applications [6], we assume that rj is a

multi-variable normal distributions whose mean and covari-

ance matrix are denoted by mj and Σj .
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If segmentation sj is known, the parameters mj and Σj

can be estimated by,

m̂j =
1

|sj |

ej
X

i=cj

xi, (3)

Σ̂j =
1

|sj |

ej
X

i=cj

(xi − m̂j)(xi − m̂j)
T . (4)

Using r̂j(m̂j , Σ̂j), Eq. 2 becomes to,

− log p(X|S, R̂) =

k
X

j=1

ej
X

i=cj

− log(p(xi|rj))

=

k
X

j=1

ej
X

i=cj

d

2
log(2π) +

1

2
(log det(Σ̂j) + (xi − m̂j)

T Σ̂−1
j (xi − m̂j)

=
nd

2
log(2π) +

1

2

k
X

j=1

|sj | log det(Σ̂j) +
nd

2
. (5)

From the perspective of information theory, the differential

entropy (Chapter 9, [3]) of normal distribution r̂j(m̂j , Σ̂j) is

log2((2πe)d det(Σ̂j))/2, where d is the dimensionality of m̂j .

Remind that the entropy denotes the expectation bits to de-

scribe a random variable. Thus MLE estimation by Eq. 5

will lead to minimize the description length of the speech

sequence. This is in concordance with the minimum descrip-

tion length principle (MDL) [13]. Because the first and the

third term of Eq. 5 do not depend on S, to maximize the

likelihood of Eq. 2 equals to minimize the following Log De-

terminant (LD) function,

LD(X, S) =

k
X

j=1

|sj | log det(Σ̂j). (6)

If we fix the covariance matrix Σ as an unit matrix I and

only estimate mean m̂j = 1/|sj |
P

x∈sj
x, Eq. 2 becomes,

− log p(X|S, R̂) =

k
X

j=1

ej
X

i=cj

d

2
log(2π) +

1

2
(xi − m̂j)

T (xi − m̂j)

=
nd

2
log(2π) +

1

2

k
X

j=1

ej
X

i=cj

||xi − m̂j ||2. (7)

Note only the second item is influenced by segmentation S.

Thus the problem equals to minimize the following mean

square error function (MSE),

MSE(X, S) =

k
X

j=1

ej
X

i=cj

||xi − m̂j ||2. (8)

The above formula is the same as the objective function of

k-means clustering (Chapter 3.5 [8]). The difference between

our problem and k-means is that k-means needs not con-

sider the time constraint, which is important for phoneme

segmentation.

2. 2 Rate Distortion

Let us consider the mechanism of human perceiving

speech. It has been shown that the ear’s perceptual mech-

anism places a limit on the smallest spectral differences

(Chapter 5. [16]). Human don’t care the small difference in

speech signals, that is why two linguistically identical utter-

ances with small acoustic differences can be perceived as the

same. This fact cannot be represented well by using mean

square error (Eq. 8) or log determinant (Eq. 6). For speech

segmentation, we need not focus on the details of speech sig-

nals too much. In the next, we are going to define Rate Dis-

tortion based on information theory (Chapter 13. [3]), which

is coinciding with human perception mechanism.

R-D theory was created by Shannon in his foundational

paper on information theory. It has been shown that R-D

theory is related to human perception mechanism. In fact,

many popular audio and video compression standards such

as MP3, JPEG and MPEG make use of R-D techniques [12].

For x under Gaussian distribution r̂j(m̂j , Σ̂j), we introduce

another random variable y and allowable distance bound ε

such that E(x − y)2 <= ε. The objective of R-D is to code

y with the fewest number of bits possible. Note here we

don’t take interest in a R-D coding algorithm, but the coding

length of a segment. We can model x and y with an additive

Gaussian noise model: y = x+z,where noise z ∼ N(0, εI) [3].

Then

E(y − ȳ)2 = E(x − x̄)2 + 2E(x − x̄)Ez + Ez2 = εI + Σ̂j ,

(9)

where ȳ and x̄ are the expected value of y and x, respectively.

Thus the entropy of y is bounded by log2((2πe)d det(εI +

Σ̂j))/2. R-D theory defines a rate distortion function R(ε) =

minE(x−y)2<=ε I(x; y) to represent the infimum of rates such

that bound ε can be achieved. We have,

I(x; y) = h(y) − h(z)

<=
1

2
log(2πe)d det(εI + Σ̂j) −

1

2
log(2πe)d det(εI)

=
1

2
log det(I + Σ̂j/ε) (10)

The last line yields a upper bound for rate distortion func-

tions. （注1） We use Eq. 10 to define the following rate distor-

tion (RD) function of X under segmentation S,

RD(X, S) =
k

X

j=1

|sj | log det(I + Σ̂j/ε). (11)

We also noticed that a similar measure had been successfully

（注1）：The upper bound by Eq. 10 still holds when x is not Gaus-

sian. Roughly speaking, this is because gaussian variables are mostly

difficult to code.
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used for image segmentation in vision field recently [9]. But

different from their methods, we don’t use the coding lengths

for segmentation and for mean vector.

2. 3 Invariance to orthogonal transformation

In this Section, we will prove that the segmentation by op-

timizing log determinant of Eq. 6, and rate distortion of Eq.

11 is invariant to orthogonal transformations.

［Theorem 1］ Consider two sequences X = x1, x2, ..., xn

and X ′ = x′
1, x

′
2, ..., x

′
n where x′

i = Axi + b (A denotes a

full-rank d × d transformation matrix and b represents a

translation vector). By minimizing the LD and RD objective

functions defined by Eq. 6 and Eq. 11, X and X ′ will have

the same segmentations.

Proof 1) At first, we prove the theorem for Eq. 6. Let

uj and Σj denote the mean and covariance of Xsj and u′
j

and Σ′
j denote the mean and covariance of X ′

sj
. It is easy to

examine that

u′
j = Auj + b,

Σ′
j = AΣjA

T . (12)

Under segmentation S, we have

LD(X ′, S) =

k
X

j=1

|sj | log det(Σ̂′
j)

= 2d log det(A) +

k
X

j=1

|sj | log det(Σ̂j)

= 2d log det(A) + LD(X, S). (13)

In the above equation the first term 2d log det(A) is a con-

stant which does not depend on S. Therefore, X and X ′ will

have the same optimal MLE segmentation (Eq. 6).

2) In the next, we prove the theorem for Eq. 11. Ap-

ply eigen-decomposition on covariance matrix Σ̂j = UT DU ,

where U is the matrix of eigenvectors and D is a diagonal

matrix composed by the eigen values λ1, λ2, ..., λm. Then,

log det(I + Σ̂j/ε) =

d
X

k=1

log(1 + λk/ε). (14)

It is easy to see that the above RD objective function only

depends on the eigen values of the covariance matrices. Also

according to Eq. 12, the orthogonal transformation will not

change the eigen values. Thus

RD(X ′, S) =

k
X

j=1

|sj | log det(I + Σ̂′
j/ε)

=

k
X

j=1

|sj | log det(I + Σ̂j/ε)

= RD(X, S). (15)

Therefore, X and X ′ will have the same optimal segmenta-

tion by Eq. 11.

Theorem 1 has pratical meaning for our structure study

[10], [11]. The structure representation need to divide input

sequences to several events (segments). It is hoped that the

input sequences under different transformations can be di-

vided into the same way. With Theorem 1, we can achieve

invariant segmentation for orthogonal transformation by op-

timizing Eq. 6 or Eq. 11.

3. Optimization Algorithm

In Section 2., we have developed three objective functions

for segmentation: Mean Square Error (Eq. 8), Log Deter-

minant (Eq. 6) and Rate Distortion (Eq. 11). The next

problem is how to minimize these objective functions. It is

not hard to see that all the three functions can be written

into the following form:

min
{s1,s2,...,sk}

k
X

j=1

f(X, sj), (16)

where f(X, sj) can be seen as a function to represent the

inner variance (or coherence) of segmentation Xsj .

Perhaps the quickest idea to optimize Eq. 16 for a sequence

is to use dynamic programming (DP). However, the direct

use of DP needs time cost O(n2k), where n is the length

of sequence and k is the number of segments. This makes

it impractical for our problem, as an utterance of sentence

may contain several thousands of frames. In this paper, we

use an agglomerative clustering algorithm (Chapter 3.2 [8])

to optimize Eq. 16. The algorithm works in a bottom-up

manner. It begins with each frame as a segment and merge

some frames into larger segments successively in a greedy

way. The algorithm can be solved in time O(n). Details are

as follows.

Algorithm 1 Agglomerative Segmentation (AS) Algorithm

1: INPUT sequence X = (x1, x2, ..., xn) and the number of seg-

ments k.

2: Initialize segmentations as S = {sj = j}n
j=1, t = n.

3: while t > k do

4: find index j′, which minimizes the following equation

f(X, sj ∪ sj+1) − f(X, sj) − f(X, sj+1); (17)

5: merge sj′ and sj′+1 into a single segment;

6: t = t − 1.

7: end while

8: OUTPUT segmentation S.

3. 1 Fast implementation

The time-costly computation in the AS algorithm is to cal-

culate the variance (when using Eq. 8) or covariance matrix

(when using Eq. 6 and Eq. 11) for each segment. This

computation must repeat many times until the algorithm
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terminates. In fact, we need not directly use the summation

form of Eq. 3, Eq. 8 and Eq. 4 to calculate mean, variance

and covariance every time. There is a more efficient way. We

can calculate the following integration functions firstly:

G1(i) =

i
X

k=2

xk−1 (G1(1) = 0), (18)

G2(i) =

i
X

k=2

xk−1x
T
k−1 (G2(1) = 0), (19)

where i = 1, 2, ..., n+1. Note G1(i) is a vector and G3(i) is a

matrix. Then the mean mj , variance Vj and covariance ma-

trix Σj of segment Xsj ( sj = (cj , ..., ej)) can be calculated

by:

mj =
1

ej − cj + 1
(G1(ej + 1) − G1(cj)), (20)

Σj =
1

ej − cj + 1
(G2(ej + 1) − G2(cj)) − mjm

T
j , (21)

Vj = Diag(Σj), (22)

where ‘Diag’ denotes the diagonal of a matrix. In this imple-

mentation, the integration functions only need to be calcu-

lated once at the beginning. After that, mean, variance and

covariance can be estimated without summation operations.

4. Experiments

We use the training part from the TIMIT American En-

glish acoustic-phonetic corpus [7] to evaluate the proposed

objective functions. The database includes 4,620 sentences

from 462 American English speakers of both genders from

8 dialectal regions. It includes more than 170,000 bound-

aries, totally. The sampling frequency is 16kHz. For each

sentence, we calculate the spectral features from speech sig-

nals by 16ms Hamming windows with 1ms shift, and then

transform spectral features into 12 mel-cepstrum coefficients

(excluding the power coefficient). We design the following

two experiments to evaluate and compare the three types of

objective functions. Comparisons with other methods are

also given at last.

4. 1 Experiment 1: segmentation of biphone sub-

sequences

In the first experiment, we extracted all the biphone sub-

sequences by referring to the label information of TIMIT

database. For each biphone segment, its middle boundary

was detected by the minimizing the proposed objective func-

tions. The task is simple. We can easily find the global op-

timal boundary and calculate the shift error between the de-

tected boundary and the ground truth boundary, which are

difficult in sequence segmentation with multiple phonemes.

We did experiments to compare the performances of the

following functions: 1)mean square error (MSE), 2) log deter-

minant estimated by diagonal covariance matrix (LD-DIA),

表 1 Comparison of the average absolute shift errors

Method MSE LD LD-DIA RD RD-DIA

Error(ms) 16.6 18.8 17.8 15.1 16.0

3)log determinant estimated by full covariance matrix (LD),

4) rate distortion estimated by diagonal covariance matrix

(RD-DIA), 5)rate distortion estimated by full covariance ma-

trix (RD). To avoid the singular problem of covariance ma-

trix, the minimum length of a segment is set as 18ms. The

R-D distance bound ε (Eq. 11) is set as 0.05. The Absolute

Shift Error (ASE) between the detected boundary and the

ground truth are calculated for each subsequence. The av-

erage ASEs of the five methods are shown in Table. 1. We

found that RD has the least ASE among all the compared

objective functions.

4. 2 Experiment 2: segmentation of sentences

In the second experiment, we examine the proposed ob-

jective functions on the sequence segmentation tasks. The

agglomerative segmentation (AS) algorithm introduced in

Section 3. is used. We set the stop number k of the AS

algorithm as the number of phonemes in the sentence. The

AS algorithm starts with one frame in each segmentation.

When the number of frames of a segmentation is less than

12, the covariance matrix of the segmentation will be sin-

gular and its determinant will be zero. This fact prohibits

us to use LD. So we execute experiments on the other four

methods: MSE, LD-DIA, RD, and RD-DIA. We count how

many ground truth boundaries are detected within a toler-

ance window (20∼40ms). The recall rate is adopted as a

comparison criterion,

Recall rate =
number of boundaries detected correctly

total number of ground truth boundaries
.

The results are summarized in Table 2. We can find that

rate distortion based measures (RD and RD-DIA) always

outperform other measures (MSE and LD-DIA). When the

window size is small (20ms), the performance of MSE and

RD (RD-DIA) is very near. But the differences between

MSE and RD (RD-DIA) increase when the tolerance win-

dows enlarge. We think the reason mostly comes from the

AS-algorithm. The reliable calculation of covariance matrix

for RD (RD-DIA) requires an enough number of frames in

a segment. However, this requirement cannot be satisfied at

the beginning phase of the AS algorithm, when the segments

are small. Moreover, when using RD, the AS algorithm with

RD or MSE prefers to merge shorter segments as this will

usually lead to the smaller value of Eq. 17. To verify this

prediction, we did another experiment where we use a sim-

ple Average Mean Square Error (AMSE) function fm(X, s)

for pre-segmentation. fm(X, s) =
P

j∈s(xj − x̄)2/|s|, where

mean x̄ =
P

j∈s xj/|s|. It is noted that AMSE has a poor
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表 2 Recall rates of sequence segmentation

Method MSE LD-DIA RD RD-DIA

20ms 78.3% 72.3% 77.8% 78.4%

30ms 87.9% 84.9% 89.7% 89.0%

40ms 93.2% 91.6% 95.4% 94.4%

表 3 Recall rates with pre-segmentation

Method MSE RD RD-DIA AMSE

20ms 78.6% 78.8% 79.1% 74.0%

30ms 88.0% 90.1% 89.2% 81.7%

40ms 93.2% 95.5% 94.4% 86.3%

performance if we use it thoroughly (Last column, Table 3).

Here we just used it to do pre-segmentation until the number

of segments reaches five times of the number of phonemes in

a sentence. The pre-segmentation is done in the same way

for all the compared methods (MSE, RD and RD-DIA). The

results are shown in Table 3. We can find that the recall

rates can be improved with such a simple pre-segmentation.

It is noted that this is just a rough test. One may improve

the results by using better cost functions and schemas for

pre-segmentation.

4. 3 Comparisons with other methods

It is not easy to directly compare our method with other

unsupervised segmentation methods, since many authors

used different data sets and testing protocols. We assume

that tolerance window size is 20ms, since it is most widely

used. In [4], with the same database, the authors showed a

detected rate of 84.5%, and among them, 89% are within

20ms. So their rate is 0.845× 0.89=75.2%, which is lower

than ours 79.1%. Moreover, our insertion rate is 20.9%,

which is lower than 28.2% in [4]. [5] used the testing part

of TIMIT database, which includes less number of sentences

(1,344) than we used. When their over-segmentation equals

zero, the correct detection rate in their experiments corre-

sponds to our recall rate. In this case, our result is 79.1%,

while theirs is 76.0% [5]. In [1], the authors use a subset of

TIMIT database containing 480 sentence and showed a re-

call rate 73.6%. Although our recall rates are still lower than

the HMM-based segmentation methods [2], [17], our methods

don’t make use of prior knowledge such as linguistic contents

or acoustic models and don’t need a training procedure.

5. Conclusions

This paper proposes a class of optimal segmentation meth-

ods for unsupervised phoneme boundary detection. We for-

mulate the segmentation problem in a probabilistic frame-

work, and develop three objective functions for segmentation

based on statistic and information theory analysis: Mean

Square Error (MSE), Log Determinant (LD) and Rate Dis-

tortion (RD). Especially, RD function is deduced from Rate

Distortion theory and can be related to human audio per-

ception mechanism. We introduce an agglomerative segmen-

tation algorithm to find the optimal segmentation and show

how to implement the algorithm in an efficient way. Exten-

sive experiments are executed to compare the three objective

functions. The results show that RD function outperforms

the other two objective functions. The theories and methods

proposed in this paper not only apply to the phoneme seg-

mentation methods but also may have applications in other

sequence segmentation problems. We are going to apply the

proposed methods on the event detection problems in our

structure study [10], [11].
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