
Automatic Recognition of Connected Vowels Only Using
Speaker-invariant Representation of Speech Dynamics

Satoshi Asakawa1, Nobuaki Minematsu1, Keikichi Hirose2

1Graduate School of Frontier Sciences, The University of Tokyo
2Graduate School of Information Science and Technology, The University of Tokyo

{asakawa, mine, hirose}@gavo.t.u-tokyo.ac.jp

Abstract
Speech acoustics vary due to differences in gender, age, micro-
phone, room, lines, and a variety of factors. In speech recogni-
tion research, to deal with these inevitable non-linguistic vari-
ations, thousands of speakers in different acoustic conditions
were prepared to train acoustic models of individual phonemes.
Recently, a novel representation of speech dynamics was pro-
posed [1, 2], where the above non-linguistic factors are effec-
tively removed from speech as if pitch information is removed
from spectrum by its smoothing. This representation captures
only speaker- and microphone-invariant speech dynamics and
no absolute or static acoustic properties such as spectrums are
used. With them, speaker identity has to remain in speech rep-
resentation. In our previous study, the new representation was
applied to recognizing a sequence of isolated vowels [3]. The
proposed method with a single training speaker outperformed
the conventional HMMs trained with more than four thousand
speakers even in the case of noisy speech. The current paper
shows the initial results of applying the dynamic representation
to recognizing continuous speech, that is connected vowels.
Index Terms: speech dynamics, robust invariance, structure

1. Variable substances, invariant dynamics
Many speech sounds are produced as standing waves in a vocal
tract and acoustic properties of the waves depend on the shape
of the vocal tube. Different shapes cause different timbre. No
two humans have the same tube and then, speech acoustics vary.
Many speech sounds are produced as voiced with vibrations of a
vocal cord and F0 of the sounds depends on the length, tension,
mass of the cord. Shorter and lighter cords vibrate more rapidly.
No two humans have the same cord. Speech acoustics vary again.

Pitch is physically characterized by F0 and its dynamic
pattern is often visualized. Difference in the length or mass
translates the pattern to be higher or lower globally. Dynamic
changes of F0 are invariant and, due to this invariance, we can
easily find the equivalence between two F0 patterns of the same
linguistic content although they are absolutely different. This is
the case with music. Transposition of a musical piece does not
change its melody. Many people verbalize a piece and its trans-
posed version as the same sequence of syllable names. Here,
perception of Do, the tonic sound, occurs completely irrespec-
tive of sound substances. They perceive a scale structure in the
melody and, within the structure, a certain sound will recall an
internal voice of Do. They hear voices of Do, Re, Mi, etc.

As is well-known, a process of producing a vowel is very
similar to that of producing a sound with a wind instrument. A
vocal tract is an instrument and, by changing its shape, sounds
of different timbre are generated, called speech sounds. Music
is composed of dynamic changes of pitch and speech is com-
posed of dynamic changes of timbre. The former dynamics are
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Figure 1: Linear or non-linear mapping between two spaces

easily formulated to be invariant among different instruments
and speakers. What about the latter dynamics? For a variety of
non-linguistic factors, is it possible to formulate them as invari-
ant? Figure 2 shows a piano sound sequence of CDEFG and a
speech sound sequence of /aiueo/ with the Japanese vowel chart.
The two dynamic patterns are illustrated in phase spaces, where
pitch is defined physically as one-dimensional feature of F0 and
timbre is tentatively defined as two-dimensional feature of F1
and F2. Cepstrum coefficients can also be used to expand a 10-
to 20-dimensional phase space. As is shown in the vowel chart,
it is often said in phonetics that the vowel structure of male
speech can be translated to become that of female speech. If
this is correct enough, the timbre dynamics can be easily formu-
lated to be invariant because speaker difference only translates
the sound structure. However, every speech engineer knows that
this idea is too simple to apply to real world speech data.

What sort of function can map the acoustic space of speaker
A into that of speaker B? Linear or non-linear? This question
has been frequently raised in the research of speaker adaptation
in speech recognition and speaker conversion in speech synthe-
sis. Figure 1 shows two acoustic spaces of speakers A and B.
Acoustic events of p1 and p2 of A are mapped to those of q1

and q2 of B, respectively. It is easily supposed that a mapping
function of A’s entire space into B’s entire space has to be very
complicated. Further, the form of the function will depend on
both the source and target speakers. These indicate that, if one
wants to focus on invariance in the timbre dynamics, he has to
derive some invariant acoustic observations with respect to any
form of mapping function. Is the robust invariance possible?

2. Robust and structural invariance
The answer is definitely yes if the two spaces have one-to-one
correspondence [4]. Point (x, y) in space A is uniquely mapped
to (u, v) in space B and vice versa. In the following, a two-
dimensional space is used for explanation but it does not reduce
the generality. Every event is characterized as distribution.

1.0 =

Z
©
Z

pi(x, y)dxdy, 1.0 =

Z
©
Z

qi(u, v)dudv

Here, we consider functions of f and g for the mapping.

x = f(u, v), y = g(u, v)
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Figure 2: Dynamic changes of pitch in CDEFG and those of timbre in /aiueo/ with the Japanese vowel chart

f and g can be non-linear. Even when they cannot be repre-
sented by any known analytical expressions, the following dis-
cussion is effective. By f and g, any integral operation in space
A can be rewritten as its counterpart in space B.ZZ

φ(x, y)dxdy =

ZZ
φ(f(u, v), g(u, v))|J(u, v)|dudv

=

ZZ
ψ(u, v)dudv,

where
ψ(u, v) = φ(f(u, v), g(u, v))|J(u, v)|.

J(u, v) is Jacobian. Any pi in A can be mapped into qi in B.

qi(u, v) = pi(f(u, v), g(u, v))|J(u, v)|.
Physical properties of pi are different from those of qi. p1 may
represent /a/ of speaker A and q1 may represent /a/ of B. What
can be robustly invariant between a set of pis in space A and a
set of qis in space B? Let us consider Bhattacharyya distance,
one of the distance measures between two distributions.

BD(p1, p2) = − log

Z
©
Z p

p1(x, y)p2(x, y)dxdy

= − log

Z
©
Z p

p1(f(u, v), g(u, v))|J | · p2(f(u, v), g(u, v))|J |dudv

= − log

Z
©
Z p

q1(u, v)q2(u, v)dudv = BD(q1, q2)

BD between two events in space A and BD between their corre-
sponding two events in space B cannot be changed. Events can
change easily but difference between the events cannot change
by any transformation. This invariance does not require any
calculation or formulation of functions f and g and Jakobian
J(u, v). If distributions of events can be estimated correctly,
we can easily find the invariance of distances. This invariance
is also satisfied with other distance measure, such as Kullback-
Leibler distance. In this paper, BD was adopted because pre-
liminary experiments showed its superiority.

The shape of a triangle is determined uniquely if the length
of the three segments is given. The shape of n points in a ge-
ometrical structure is determined uniquely if the length of all
the nC2 diagonal segments is given. In other words, if a dis-
tance matrix is given for n points, the matrix determines the
shape of the n-point structure uniquely. As told above, BD is
robustly transformation-invariant. Given n distributions, a BD-
based distance matrix derives its robustly-invariant structure.

What type of transformation can effectively specify non-
linguistic speech distortions? They are often classified into
three types; additive, convolutional, and linear transformational
distortions. The last two types will be the focus of this paper
because the first type is not inevitable. Microphones and rooms
are typical causes of convolutional distortion. If a speech event
is represented by cepstrum vector c, this distortion changes c
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Figure 3: Spectral distortions caused by Ai and bi
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Figure 4: BD-based robustly-invariant structure of speech

into c′=c+b. Vocal tract length difference is a typical example
of linear transformational distortion. It is often modeled as fre-
quency warping of the log spectrum and it can be appropriately
modeled as c′=Ac [5]. Various distortion sources are found
in speech communication but the total distortion due to the in-
evitable sources, Ai and bi, is eventually modeled as c′=Ac+b,
known as affine transformation. Figure 3 schematizes the spec-
tral distortions due to Ai and bi, corresponding to horizontal
and vertical ones, respectively. Although this model is linear
and the simplest, the BD-based structure is invariant with more
complicated transformations such as non-linear ones.

From a spoken utterance, it is possible to extract its invari-
ant structure, shown in Figure 4. After converting the utterance
into a sequence of distributions, all the phonic contrasts between
any two distributions are calculated. Here, long-distance con-
trasts are also considered. As BD is interpreted mathematically
as correlation between two distributions, a BD-based distance
matrix represents a full set of interrelations between any two of
the acoustic events, including temporally-distant ones. If speech
dynamics are represented in an m+1 dimensional phase space,
as in Figure 2, its invariant structure is obtained after convert-
ing the speech trajectory into a sequence of distributions and
projecting the distributions onto the m dimensional phase space
(F1/F2 plane in Figure 2). Then, a BD-based structure can be
formed from the projected distributions. In previous studies,
speech dynamics or trajectories were often characterized as a
series of local dynamic features such as delta cepstrum (See
Figure 2 and suppose that the space is a cepstrum-based space).
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Figure 5: Structural matching through shift and rotation

Table 1: Acoustic conditions for the analysis
sampling 16bit / 16kHz
window 25 ms length and 4 ms shift
parameters mel cepstrum (1 to 12) + Δ (1 to 12)
distribution 1-mixture Gaussian with a diagonal matrix

The fact that any transformation cannot change the structure of
speech dynamics indicates that any transformation works geo-
metrically as either of the two operations, rotation and shift. In
the case of c′=Ac+b, A and b are rotation and shift, respec-
tively. This mathematically claims that the direction of speech
dynamics has to depend on the vocal tract length, i.e., speaker’s
age [1]. This is why we capture the speech dynamics only based
on their scalar quantities which are robustly invariant.

3. Structure-based speech recognition
3.1. Task of the recognition experiments

In order to compare with the results obtained in our previous
study [3], a continuous version of the task adopted in that study
was used here. The task is recognizing connected vowels and
the number of vowels in an utterance is 5; V1-V2-V3-V4-V5,
where Vi �=Vj . Since Japanese has five vowels, PP is 5P5 (120).

3.2. Framework of the structure-based recognition

Once an utterance is represented as structure, it will be matched
with reference structures stored in a template database. Figure 5
shows acoustic matching between two structures P and Q. One
of the two structures is shifted and rotated so that the two can be
overlapped the best. Then, the structure-based distance is cal-
culated as the minimum of the total distance between the cor-
responding two points after the two geometrical operations. In
[1], it was shown that the minimum distance D can be approxi-
mately obtained as euclidean distance between the two distance
matrices, where the upper-triangle elements form a vector;

D(P, Q) =

s
1

n

X
i<j

(pij − qij)2. (1)

pij is a (i, j) element of P and n is the number of distributions.
The overall framework is shown in Figure 6. The left side

shows the procedure to extract the structure from an input utter-
ance. To convert a frame sequence to a distribution sequence,
the MAP-based training of HMMs was adopted because all the
distributions had to be estimated from only a single utterance.
After that, a distance matrix was obtained from the distribu-
tions, and the upper-triangle elements were used as a feature
vector. The acoustic conditions used are shown in Table 1.

The right side is a reference template database. Here, each
of the 120 words was modeled as structure statistically, which
was a multivariate Gaussian distribution. Distance between an
input utterance (an upper-triangle vector) and a template (a mul-
tivariate distribution) was calculated as Mahalanobis distance.

Cepstrum distribution
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Figure 6: Framework of the structural recognition

3.3. A problem of time-alignment between utterances

Switching from isolated vowels to connected vowels, we had a
big problem, which was time-alignment between utterances. It
is assumed in Equation 1 that two distribution sequences have
good correspondence or alignment between them. In recogniz-
ing isolated vowel sequences, since they had a clear boundary
between consecutive vowels, the good correspondence was eas-
ily guaranteed. But it is not in the current task and the number
of distributions may be different between two utterances.

To solve this problem, DTW between two distribution se-
quences was examined as preprocessing. Here, DTW was im-
plemented in two different ways. One was using acoustic sub-
stances (cepstrum distributions), and the other was not. Even in
the first case, they were used only for this time-alignment and
the structural matching was done only with the two matrices af-
ter equalizing the number of distributions using the alignment.

With the substances, the local distance measure between Pt

(t-th distribution in sequence P) and Qs was defined as

dsub(Pt, Qs) =
p

BD(Pt, Qs). (2)

The other measure was obtained without substances as

dstr(Pt, Qs) =

MX
m=1

|ptm − qsm| . (3)

This is regarded as total difference of interrelations of two given
events to each of all the events. M is the length of the sequence.

3.4. Another problem of too strong invariance

With any mapping function, the structural invariance is satis-
fied. This strong invariance will probably cause a critical prob-
lem, where a word and another linguistically different word will
be observed as identical. This should decrease the recognition
performance easily. Some constraints should be introduced to
restrict allowable geometrical transformations and we consid-
ered that articulatory constraints should be used. However, we
did not have good knowledge on relating possible articulatory
variations to allowable geometrical operations. Therefore in this
paper, purely geometrical constraints were examined.

We focused on rotation, any of which always satisfies the
structural invariance. However, if a structure is projected into
a sub-space, the projected structure will change by transforma-
tion. By hypothesizing that the structural invariance is also sat-
isfied in sub-spaces, geometrically speaking, the allowable op-
erations are restricted. This hypothesis is easily introduced into
the structural matching procedure by considering a cepstrum
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stream as multiple independent sub-streams. The total distance
between two structures was calculated by accumulating struc-
tural sub-distances obtained in the individual sub-spaces. To
verify this hypothesis, a parameter vector had to be divided ad-
equately into sub-vectors. In this paper, uniform division was
tentatively examined. All the elements of a vector were divided
into a group of sub-vectors of the same number of dimensions.

3.5. Experimental set-up

8 male and 8 female adult speakers joined the recording and five
utterances were recorded for each of the 120 words. The total
number of utterances was 9,600. The samples from 4 males and
4 females were used for training and the others for testing. In
the previous study, only a single speaker was used for training
[3]. In this work, however, as the required number of utterances
was so large, multiple speakers were used for training.

In the case of using DTW, the statistical templates were
trained also using DTW as preprocessing. When an input struc-
ture was matched after DTW with substances, the templates also
needed acoustic substances. However, the structural matching
was done only with the two matrices. The number of distri-
butions in an input and that in the individual templates were
equalized to be 10, 15, 20, 25, and 30. A speech stream was
treated as two separate streams of cepstrum and its Δ, meaning
that two kinds of structures were always considered here.

The parameter division was further carried out to reduce the
invariance, where the numbers of division were 1 (no division),
2, 3, 4, 6, and 12 for each of the two streams. In this experiment,
the number of distributions was fixed to 25 and DTW was not
done, meaning that no acoustic substances were used at all.

For comparison, two sets of speaker-independent HMMs
were tested for the same task; 260-speaker tied-state HMMs
and 4,130-speaker tied-mixture HMMs [6], both of which were
trained with MFCC and CMN. CFG allowing only the testing
120 words was used as language model.

3.6. Results and discussions

Figure 7 shows the results without the parameter division. The
best performance of the proposed method without DTW was
66.6% in 25 distributions, 73.4% with non-substance DTW and
92.6% with substance DTW in 30 distributions. Basically, the
larger the number of distributions is, the better the performance
is. In our previous study [3], one distribution was sufficient
for an isolated vowel but, for connected vowels, more distri-
butions are needed naturally. Comparing the recognition per-
formance with/without DTW, it is obvious that applying DTW
improves the performance and that the improvement with sub-
stances is much larger. These results clearly indicate that DTW
resolved the alignment mismatch and that the resolution owed
much to acoustic substances. Figure 7 also shows the results
of the HMMs; 82.1% and 97.4% for 260- and 4,130-speaker
HMMs, respectively. Considering these results, we have to
admit that the speech recognition only with speech dynamics
seems hopeless. Conversely speaking, this may imply the too
strong invariance induced by abstraction.

With some constraints, however, completely different re-
sults were obtained and they are shown in Figure 8 as function
of the number of division. It should be noted that all the ex-
periments were done without DTW. With a larger number of
division, the better performance was obtained and, in the cur-
rent experiments, the best performance was 92.6%. If some
optimization is done for the division, the performance should
improve. Why so large improvement in comparison with the
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Figure 8: Recognition performance with constraints

results in Figure 7? Since distributions are estimated based on
the algorithm of training HMMs, the alignment mismatch in
distributions is smaller than that in frames. Although Figure 7
claims that the mismatch in distributions is not small enough,
we consider firstly that this mismatch can be cancelled to some
degree by dealing with speech as multiple independent streams.
Further, as in the above discussion, the multiple stream strategy
also induces some appropriate transformational constraints.

4. Conclusions
This paper showed the initial results of applying the speaker-
invariant representation of speech dynamics to recognizing con-
tinuous speech. The MAP-based HMM training algorithm was
used to structuralize an input utterance. Using some geometri-
cal constrains realized as the multiple stream strategy, the pro-
posed method only with 8 training speakers outperformed 260-
speaker HMMs and showed the rather comparable performance
to 4,130-speaker HMMs. Since the proposed method only ex-
tracts speech dynamics, it cannot identify any separate sounds.
This is directly opposite to the conventional methods because
they were based on identifying individual frames or sounds, and
that after collecting an enormous amount of data. This strategic
difference can be interpreted as holism vs. reductionism [4].
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