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Abstract
This paper introduces a novel speech enhancement method 
based on Empirical Mode Decomposition (EMD) and soft-
thresholding algorithms. A modified soft thresholding 
strategy is adapted to the intrinsic mode functions (IMF) of 
the noisy speech. Due to the characteristics of EMD, each 
obtained IMF of the noisy signal will have different noise and 
speech energy distribution, thus will have a different noise 
variance. Based on this specific noise variance, by applying 
the proposed thresholding algorithm to each IMF separately, 
it is possible to effectively extract the existing noise 
components. The experimental results suggest that the 
proposed method is significantly more effective in removing 
the noise components from the noisy speech signal compared 
to recently reported techniques. The significantly better SNR 
improvement and the speech quality prove the superiority of 
the proposed algorithm.  
Index Terms: speech enhancement, empirical mode 
decomposition, soft-thresholding 

1. Introduction 
Speech enhancement aims at improving the perceptual quality 
and intelligibility of a speech signal through noise removal, 
while paying excessive attention on the original speech 
components [1]. The process has significant importance in 
speech processing systems operating in noisy environments. 
Due to its importance in today’s information technology, the 
topic is widely researched and many methods have been 
developed for this purpose. Since speech signals are nonlinear 
and non-stationary in nature, the performance of related 
studies is dependent on the analysis method. Fourier 
transform and wavelet analysis made great contributions. 
However, for nonlinear and non-stationary signals, these 
analysis methods suffer from many shortcomings [2].  

A new nonlinear technique, the empirical mode 
decomposition (EMD), has recently been pioneered by Huang 
et. al. [2] for analyzing the nonlinear and non-stationary 
signals. This powerful data analysis method, often proving its 
efficiency, has made a new and effective path in speech 
enhancement studies as well as in many other research areas. 
The purpose of the method is to adaptively represent the 
nonlinear and non-stationary signals as sums of zero-mean 
oscillating components, named the intrinsic mode functions 
(IMFs). The idea of finding the IMFs relies on subtracting the 
highest oscillating components from the data with a step by 
step process. Therefore the IMFs have different frequency 
characteristics; the upper the IMF, the higher its frequency 
content. With this powerful characteristic, recent studies have 
shown that it is possible to successfully identify and remove a 
significant amount of the noise components from the IMFs of 

a noisy speech. As mentioned in [3], in case of white noise, 
most of the noise components of a noisy speech signal are 
centered on the first three IMFs. Therefore, EMD makes it 
possible to at some extent separate the high frequency noise 
from the major speech components. A thresholding algorithm 
can be applied to each IMF depending on its specific noise 
level to eliminate the noise components while keeping the 
original speech signal.  

Soft thresholding is a powerful technique used for 
removing the noise components by subtracting a constant 
value from the coefficients of the noisy speech signal 
obtained by the analyzing transformation. However, such type 
of direct subtraction results in a degradation of the speech 
components. Unlike the conventional constant noise-level 
subtraction rule [4, 5], a new soft thresholding strategy was 
proposed in [6]. The later one is capable to remove the noise 
components while giving significantly less damage to the 
speech signal.  This enables even signals with high SNRs to 
be processed effectively. However, due to the thresholding 
criteria, it is not possible to efficiently remove the noise 
components that are embedded in the higher energy speech 
components. Due to the frequency characteristics of IMFs, 
EMD makes it possible to also separate these noise 
components effectively. With a modification on this soft 
thresholding algorithm, we can successfully denoise the IMFs 
of the noisy speech signal. 

In this paper, we illustrate a novel speech enhancement 
method based on applying the soft thresholding algorithm 
with EMD. The proposed method includes a modification of 
the soft thresholding strategy and a specific approach for each 
IMF of the noisy speech.  

2. Basics of EMD 
The principle of EMD technique is to decompose any signal 
s(t) into a set of band-limited functions Cn(t), which are the 
zero mean oscillating components, simply called the IMFs. 
Each IMF satisfies two basic conditions: (i) in the whole data 
set the number of extrema and the number of zero crossings 
must be same or differ at most by one, (ii) at any point, the 
mean value of the envelope defined by the local maxima and 
the envelope defined by the local minima is zero [2]. The first 
condition is similar to the narrow-band requirement for a 
Gaussian process and the second condition is a local 
requirement induced from the global one, and is necessary to 
ensure that the instantaneous frequency will not have 
redundant fluctuations as induced by asymmetric waveforms. 
Although a mathematical model has not been developed yet, 
different methods for computing EMD have been proposed 
after its introduction [7, 8]. The very first algorithm, called as 
the sifting process, is adopted here to find the IMFs of the 
data. The sifting process is simple and elegant. It includes the 
following steps: 
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1. Identify the extrema (both maxima and minima of 
s(t)) 

2. Generate the upper and lower envelopes (u(t) and 
l(t)) by connecting the maxima and minima points 
by cubic spline interpolation 

3. Determine the local mean m1(t)=[u(t)+l(t)]/2
4. Since IMF should have zero local mean, subtract 

out m1(t) from s(t) to get h1(t)
5. Check whether h1(t) is an IMF or not 
6. If not, use h1(t) as the new data and repeat steps 1 to 

6 until ending up with an IMF 

Once the first IMF h1(t) is derived, it is defined as C1(t)=h1(t), 
which is the smallest temporal scale in s(t). To compute the 
remaining IMFs, C1(t) is subtracted from the original data to 
get the residue signal r1(t): . The residue 
now contains the information about the components of longer 
periods. The sifting process will be continued until the final 
residue is a constant, a monotonic function, or a function with 
only one maxima and one minima from which no more IMF 
can be derived [7]. The subsequent IMFs and the residues are 
computed as: 

At the end of the decomposition, the data s(t) will be 
represented as a sum of n IMF signals plus a residue signal, 
which is generally a constant or a monotonic trend: 

3. DCT Soft-Thresholding  
Transform domain speech enhancement methods commonly 
use amplitude subtraction based soft thresholding defined by 
[4, 5]: 

          (3) 

where  denotes the standard deviation of the noise,  is 
the k’th coefficient of the noisy signal obtained by the 
analyzing transformation and  represents the corresponding 
thresholded coefficient. Since all the coefficients are 
thresholded by , the speech components are also degraded 
during this process. Giving effective results in the case of low 
SNR, this method cannot be applied for high SNR values, 
where components are mostly the speech signals.  

As reported in [6], soft thresholding technique for DCT 
speech enhancement is effective in denoising the noisy speech 
signal for a wide range of SNR values. The main advantage of 
the technique comes from the new soft thresholding strategy 
which enables even signals with high SNRs to be enhanced. 

The noisy signal is segmented into 32 ms frames and a 
512 point DCT is applied to each frame separately. The DCT 
coefficients of each frame are further divided into 8 sub-
frames each containing 64 DCT coefficients. For adaptive 
thresholding, each sub-frame is categorized as either signal-
dominant or noise-dominant. The classification pertains to the 
average noise power associated with that particular sub-frame. 
If for the i’th sub-frame: 

then this sub-frame is characterized as a signal dominant sub-
frame, otherwise a noise dominant one. In case of a signal 
dominant sub-frame, the coefficients are not thresholded, 
since it is highly possible to degrade the speech signal, 
especially for high SNRs. In the case of a noise dominant 
subframe, the absolute values of the DCT coefficients are first 
sorted in ascending order and then a linear thresholding is 
applied: 

                
where the multiplication mj is the linear threshold function 
while j being the sorted index-number of . An estimated 
value of m can be obtained by: 

         
A reasonable value for  is between 0.2 and 0.8 [6].  

4. EMD Soft-Thresholding Algorithm 
The proposed method is based on applying the soft 
thresholding algorithm in (5) to the IMFs of the noisy speech. 
First, EMD is applied to the noisy speech. The obtained IMFs 
are divided into 4 ms sub-frames, thus each having 64 data 
for a 16 kHz sampling frequency. Similar to the DCT case, 
these sub-frames are further characterized as either a signal 
dominant or a noise dominant sub-frame. However for 
categorizing the sub-frames, unlike the limit defined in (4), a 
novel strategy is introduced here. This new soft-thresholding 
strategy provides an effective limit for the sub-frame 
categorization. Moreover, the noise variance used in 
thresholding is estimated separately for each IMF. This new 
strategy is applied to the IMFs of the noisy speech signal.   

4.1.   A Novel Soft-Thresholding Strategy 
The categorization of the sub-frames is one of the key points 
of the soft thresholding algorithm. The main purpose in this 
categorization is to make it possible to eliminate the noise 
signals without degrading the original speech components. 
This makes the soft thresholding algorithm to be applicable 
for a wide range of SNR values. However, applying this 
algorithm directly to the IMFs of the noisy speech signal will 
fail for two reasons. First, IMFs will have different noise and 
speech energy distribution, which suggests that each IMF will 
have a different noise and speech variance. Second, due to the 
decomposition, the variance of the IMF sub-frames will have 
more fluctuations than that of the noisy speech sub-frames. 
Therefore, the noise variance of each IMF should be defined 
separately and the limit for sub-frame categorization should 
have a larger value then the limit defined in (4), in order to 
guarantee that all the noisy sub-frames are thresholded.  

A novel limit relies on the idea that a sub-frame can be 
defined as a noise dominant sub-frame, if the noise power is 
higher than the speech power. Therefore, the limit should be 
set to the case where the noise and speech variance ( n

2 and 
n

2) are same. For any sub-frame; 

                                      (7)    
thus,              (8) 

where denotes the noise variance of the sub-frame and
Cov is the covariance function. In case of independence, the 
covariance function gives zero, thus we have; 
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     (9) 

For equal noise and speech power, we get; 
                                  

        (10) 

Therefore, in the case of equal noise and speech power, the 
variance of a sub-frame is equal to . That is why; the limit 
for the categorization of sub-frames in (4) should be set to this 
value. With the proposed strategy, if for the i’th sub-frame; 

then this sub-frame is defined as signal dominant, otherwise 
as a noise dominant sub-frame. In case of a noise dominant 
sub-frame, the IMFs are thresholded as in (5), where the noise 
variance in (6) is calculated separately for each IMF.  

4.2. Variance of the IMFs 
The estimation of the variance of each IMF plays an 
important role in the performance of the EMD soft 
thresholding algorithm. The calculation is achieved by a data-
adaptive, efficient algorithm. The IMFs are divided into 4 ms 
frames and the variance of each frame is stored in a variance 
array. The variance array is sorted in ascending order. Since 
the speechless parts will mostly have the lowest variance, the 
noise variance of each IMF can be estimated from the 
speechless parts of its variance array. Figure 1 shows a plot of 
the variance of the sub-frames in ascending order for the first 
6 IMFs of a noisy speech signal at 10dB SNR.  

Figure 1: Sorted noise variance of 4ms sub-frames for the first 
6 IMFs of a noisy speech signal at 10dB SNR.  

The difference between the noise variance and the length of 
the speechless parts of the IMFs can be observed in Figure 1. 
As mentioned in [3], the noise signals are concentrated in the 
first 3 IMFs. The later IMFs are mainly the speech signals, 
but also have significant amount of noise. With this method, 
we have a very good estimation of the noise variance of each 
IMF. By this way, with the proposed soft thresholding 
algorithm, the noise components in all the IMFs can 
effectively be removed. 

5. Experimental Results 
To illustrate the effectiveness of the proposed algorithm, 
extensive computer simulations were conducted with different 
10 male and 10 female utterances, which were randomly 
selected from TIMIT database. In order to observe the 
performance for a wide range of input SNRs, computer 
generated random white noise sequences were added to the 
clean speech signal to obtain the noisy signals at different 
SNRs. White noise is considered here, since it has been 
reported that this type of noise is more difficult to detect and 
remove than any other type [11]. The reported algorithms 
usually results in a residual noise. Our proposed method is 
very effective in removing the noise components while 
significantly reducing this residual noise. 

Figure 2(c) illustrates the spectrogram of the clean, noisy 
and recovered signals for the female speech “Don’t ask me to 
carry an oily rag like that.” It can be observed that the 
spectrogram of the enhanced speech signal is very close to 
that of the clean speech signal. The noise components are 
significantly removed from the noisy speech. The enhanced 
speech has a high speech quality with significantly reduced 
residual noise. There is a significant increase in the SNR. 

Figure 2: Spectrogram of a) clean speech, b) noisy speech at 
10dB SNR, c) enhanced speech with EMD soft thresholding. 

The power of the algorithm is not only limited with these 
results. Similar to the DCT soft thresholding case, the 
algorithm can be applied for a wide range of SNR values, 
basically for any value. Since the signal dominant frames are 
never thresholded, there is still a significant improvement 
even in case of high SNR values where most proposed 
methods even fail to hold on to the input SNR. The average 
results of the computer simulations of 10 male and 10 female 
utterances for different denoising methods in a wide range of 
input SNR values are listed in Table 1 ( =0.5).  

Table 1. Comparison of the SNR improvements of different 
denoising methods for a wide range of SNR values.

Input 
SNR 
(dB) 

Output SNR (dB)

WP 
[5] 

DCT 
[10] 

Soft DCT [6] 
=0.5) 

Proposed EMD 
=0.5) 

0 4.86 5.69 5.33 5.67 
5 8.86 9.76 9.67 10.14 
10 12.36 13.74 13.75 14.12 
15 15.45 17.86 17.93 18.15 
25 20.82 26.02 26.35 26.78 
30 23.16 30.25 30.56 31.28 
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The superiority of the proposed scheme can be well observed 
in the SNR improvement table. For all SNR levels, the 
proposed method gives better results apart from the 0dB case 
where the results are competitive. The effectiveness of the 
method can be better observed for high SNR values. The 
reason is, for high SNRs, the noise power is significantly less 
compared to the speech power. Therefore it is much harder to 
identify the noise components than it is for low SNRs. By 
introducing the EMD, this problem is solved very effectively. 
Since the IMFs depend on the frequency content, the high 
frequency noise components embedded in the speech signal 
are effectively separated from the speech components. As we 
discussed, these high frequency noise components dominate 
the first few IMFs. Therefore, these IMFs mainly include the 
noise dominant sub-frames and with the proposed soft 
thresholding algorithm, these IMFs are effectively denoised.  

Figure 3: Waveform of a) clean speech, b) noisy speech at 
0dB SNR, c) enhanced speech with EMD soft thresholding. 

For very low SNR values, the effectiveness of the proposed 
algorithm can still be observed. For 0dB case, the reason why 
the results are close to the other results is due to the 
degradation of the speech signal. For such a low SNR, the 
noise dominant frames are significantly high. Therefore 
during thresholding, not only the noise components are 
removed but also some low energy speech components. The 
power of the method in removing the noise components at 
very low SNR can be observed in Figure 3, which shows the 
waveforms of clean, noisy and enhanced speech at 0dB SNR. 
Considering that, at 0dB SNR, it is not an easy task to remove 
the noise components without degrading the speech signal, it 
can be concluded that the proposed method is very promising 
in terms of noise removal even for such a low SNR. 

6. Discussion 
As the experimental results suggest, the proposed method is 
very powerful in terms of noise removal for a wide range of 
SNR values. The main advantage of the method comes from 
the characteristics of the IMFs and the new soft thresholding 
strategy. Unlike the soft thresholding criteria in [6], the new 
soft thresholding strategy assures that all the noise dominant 
sub-frames are thresholded. Moreover, processing each IMF 
separately depending on its noise-speech energy distribution 
provides a much better elimination of the noise components. 
If we apply the estimated noise variance of the noisy speech 
signal for all the IMFs, the thresholding would dramatically 
degrade the speech signal. Therefore the introduction of the 
variance calculation of each IMF has significant importance 
in the effectiveness of the algorithm.  

The algorithm may further be improved by modifying the 
value of  and the limit for noise categorization. Such a 

modification can be based on the SNR of the noisy speech 
signal. For instance, the remaining noise in Figure 3 suggests 
that it is better to have a higher  for very low SNR inputs. 
However, it is also important not to degrade the speech signal. 
Therefore, the optimum value can be related with the input 
SNR. Similar approach can also be adapted for the sub-frame 
categorization limit. By this way, we can have a better 
elimination depending on the input signal. An estimation of 
the SNR of the noisy speech signal can be achieved by the 
noise variance estimation algorithm given in 4.2.  

7. Conclusion 
In this paper, we presented a novel speech enhancement 
method based on adapting a modified soft thresholding 
algorithm to the IMFs of the noisy speech signal. We have 
shown that the proposed method effectively removes the noise 
components while paying significant attention on the speech 
signal. The main advantage of the algorithm is the effective 
removal of the noise components for a wide range of SNRs. 

Due to the successful thresholding algorithm and the 
advantage of EMD, the proposed method is significantly more 
effective in removing the noise components from the noisy 
speech signal compared to recently reported techniques for a 
wide range of input SNRs. Specifically, for high input SNRs, 
the algorithm is performing better than the previous methods. 
We not only have better SNR but also a fine speech quality 
with significantly reduced residual noise.  
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