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ABSTRACT

A new method was developed for the separation of source and
transfer function characteristics of speech sounds, with an aim of
utilizing it to “flexible” speech synthesis. The method is based on
representing source waveform by an HMM, and transfer function
by the AR process (AR-HMM model). As compared to methods
based on ARX model, where a parametric representation is as-
sumed for source waveform, a better separation is possible. By in-
troducing a process of recursively deleting real poles of AR filters,
which represent source waveform features, and including them
into HMM source waveform, the resulting AR filters may correctly
represent transfer function features. Experiments were conducted
for Japanese vowel sounds in continuous speech, and the results
were compared with those by conventional LP analysis and AR-
HMM model analysis without recursive process. After represent-
ing obtained source and transfer function features respectively as
DFT cepstrum and LPC cepstrum, variations of cepstrum param-
eters for each vowel sound were compared for the three analysis
methods. The smallest variations were obtained by the proposed
method, indicating that the proposed method can separate source
and transfer function features well, and, thus, has potential ability
of generating good quality of speech when applied to “flexible”
speech synthesis.

1. INTRODUCTION

In speech synthesis, methods based on the source-filter modeling,
such as LP vocoder, are widely used, because control of funda-
mental frequency is easily realized. However, a good separation
of speech sounds into source and articulation filter characteris-
tics is not an easy problem to solve, causing certain limitations
in the quality of synthetic speech sounds especially when their
acoustic features (such as fundamental frequency) are changed
a lot. Recently, several methods, like sinusoidal modeling[1],
STRAIGHT(2] and so on, were developed for the good separa-
tion and applied to corpus-based speech synthesis. It was shown
that, after a rather large change in fundamental frequency, a rather
high-quality is maintained in the speech sounds. However, these
methods are trying to represent spectral envelope as precisely as
possible, and, thus, including source waveform features into filter
parameters. This leads to the difficulty in concatenating filter pa-
rameters of stored segments in speech synthesis, and reduces the

“flexibleness” in speech synthesis.

If the complete separation into source and filter characteris-
tics is realized, we can rather freely change them to modify the
speech quality without degradation. (Surely, because of interac-
tion between source and filter in the speech production process,
“truly complete” separation is impossible.) Since, in linear predic-
tive analysis, the AR process is assumed, the obtained LP param-
eters mostly correspond to formants, and rather good information
on filter characteristics is obtainable. However, the LP parameters
usually include source waveform characteristics as real poles and
others of the spectral envelope. Decision of appropriate LP orders
is rather crucial.

In order to realize a good separation, several methods are
tried to incorporate vocal source waveform models in the AR
process[3][4]. As for the vocal source waveform models, they are
mostly dividing the waveform of one fundamental period into sev-
eral portions and representing each of them by a mathematical for-
mula. The methods are called ARX model analysis ones, and a
good separation is realized if the source waveform model can sim-
ulates the actual waveforms. However, this is not the case. More-
over, an iterative process is required because of non-linearity in the
ARX model, making a reliable and automatic analysis difficult.

Based on these considerations, we tried to model the source
waveform using HMM scheme so that a flexible representation of
source waveform is possible, and, then include the model in AR
process. This AR-HMM model was proposed already by Sasoh et
al.[5], but it was without considerations on the good separation.
We have newly incorporated an iterative process in which vocal
source waveform features included in the AR filter are moved to
the HMM source waveform by removing real poles.

The rest of the paper is constructed as follows: Section 2 gives
an explanation on the AR-HMM model, section 3 proposes the
analysis method developed for the good separation of source and
vocal tract filter characteristics, and section 4 shows that the pro-
posed method is better than the conventional LP analysis for the
purpose of extracting parameters realizing flexible speech synthe-
sis. Section 5 concludes the paper.

2. AR-HMM MODEL

Reliable analysis of speech sounds comes difficult when their FO
is high. AR-HMM model was first adopted for the speech analysis
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for such a case by Sasoh er al., with results better than those by
conventional LP analysis[5].

Figure 1 schematically shows the AR-HMM model. In the
model, source waveform was represented as outputs from an
HMM. Different from the case of well-known HMM used in
speech recognition, it has a ring structure with a path from the
last state to the initial state. This structure corresponds to the
periodicity of the source waveform. Output probability of each
state is modeled in a single Gaussian distribution. Irregularities in
source waveform, which is difficult to be represented by mathe-
matical formulae, can be automatically included as output proba-
bility through the HMM training. Thus, better separation of source
and filter characteristics is expected than LP analysis and other re-
lated methods.
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Fig. 1. Schematic illustration for AR-HMM model.

2.1. Estimation of Model Parameters

In the following model parameter estimation process, N, p and y»,
respectively denote analysis frame length, order of AR filter and
output from AR-HMM model at time n. Also, jis and 65 indicate
estimated mean and variance of Gaussian distribution for state s of
HMM, respectively. Sequence (Sp, Sp+1,---,Sn—1) is the state
transition corresponding to the model output with maximum like-
lihood.

According to proposal by Sasoh et al.[5], parameters of AR-
HMM model is estimated as follows:

Step 1: Initialize source HMM and state sequence with maximum
likelihood.

Step 2: Calculate AR parameters and predictive error sequence
with maximum likelihood. The estimated filter coefficient
of AR process 6 is given by

~ ~—1 ~—1
0:—[QTEP Q]_IQTEIJ (yp — myp) (D

where
IEIP = [ﬂsp ﬁ5p+1 :D’SN—l]T
EP = diag(&gpvaszrl?'"7&§N71)
Q = [yp-1¥p-2 " YO]T
Yp = [UpUpt1 - yn-1]

Step 3: End the estimation when likelihood of error sequence for
HMM converges. Else, go to the next step.

Step 4: Update parameters of HMM by Baum-Welch algorithm.

Step 5: Update state sequence with maximum likelihood
{8, }2=! by Viterbi algorithm.
Step 6: Go to step 2.

2.2. Comparison with LP Analysis

When analyzing speech by LP analysis method, its order is empir-
ically decided as the double of estimated formant number plus a
small number around 2 to 4. This is intended by the fact that a for-
mant corresponds to a pair of conjugate complex poles, and spec-
tral tilt originated by the source waveform features corresponds to
a real pole. The extra poles may originate from the source wave-
form features or from the non-linearity in the speech generation
process. Since actual source waveform shows rather complex fea-
tures, the above order is not enough for the precise analysis. How-
ever, if we simply increase the order of LP analysis, the correspon-
dence between poles and formants comes not clear. Moreover, by
doing so, the source waveform characteristics come to be included
in the LP parameters, and the LP residual may only represent the
periodicity of the source waveform. This situation is far from what
we planned; a good separation of source and transfer function char-
acteristics.

Contrarily to the case of LP analysis, in AR-HMM model anal-
ysis, all the source waveform features can be included in the HMM
representation. By increasing HMM states, we can easily increase
the degree of freedom to represent complicated waveforms. How-
ever, this also reduces the stability of the analysis. In addition,
since the HMM training is done by Baum-Welch algorithm, which
is the process of finding a local-optimum, the initial assignment of
HMM parameters largely affects the final result. The algorithm in
section 2.1 trains HMM starting from LP residual-like waveform,
and, therefore, the final result may converge to one close to the LP
analysis result.

3. ITERATIVE ANALYSIS BASED ON AR-HMM MODEL

As mentioned already, the AR-HMM model can handle a complex
shape in source waveform. However, AR part of AR-HMM model
still includes components corresponding to the source waveform.
Automatic separation of these components is rather difficult and
the result may fluctuate a lot.

To cope with this problem, we developed an iterative analy-
sis method based on the AR-HMM model. By this method, poles
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corresponding to source waveform features are removed from the
AR part and their characteristics are included into the HMM part.
At the result, AR parameters directly representing transfer func-
tions and an HMM expressing source waveform can be obtained.
The method is based on the assumption that the vocal tract transfer
functions can be fully represented by the resonance poles corre-
sponding to the formants.

3.1. Procedure
Analysis is done in the following steps:

Step 1: Analyze speech waveform using AR-HMM model as in-
dicated in section 2.1.

Step 2: If no real pole is included in the estimated AR part, end
the process. Else, proceed to the next step.

Step 3: Remove real poles form the AR part to obtain a new one.

Step 4: Re-calculate the source waveform by the inverse filtering
using the new AR filter.

Step 5: Re-train the HMM and re-estimate AR-HMM parame-
ters.

Step 6: Back to step 2.

To guarantee the procedure working correctly, HMM should
have enough states to represent source waveforms. Currently this
is decided empirically.

4. EXPERIMENTS AND EVALUATION

In order to evaluate the method’s ability to separate source
and transfer function features, experiments were conducted for
Japanese vowel sounds (/a/, /i/, /u/, le/, /o/) in ATR continuous
speech corpus. These sounds were analyzed by the 3 methods:
the conventional LP method, the method based on the original
AR-HMM model and the proposed method. Comparison of the
results was conducted for LPC cepstrum and DFT cepstrum, ob-
tained respectively from vocal tract transfer functions and source
waveforms.

For comparison, real poles obtained by the two reference
methods are moved from transfer function features to source wave-
form features. The vowel sounds for analyses were those found
in 50 sentences by male speaker MHT. Table 1 summarizes the
sample number for each vowel. Although the original corpus is
recorded with 20 kHz sampling and 16 bit accuracy, it is down-
sampled to 16 kHz for the current analyses. Pre-emphasis of
1 — 0.97z" ! was applied before the analyses. For each vowel
included in the speech samples, a period of 528 samples points
was segmented from the vowel center and was used for analysis.
Through preliminary experiments, the order of LP analysis was
fixed to 16, which was also the same with the order of AR filter of
the original AR-HMM model and the initial AR filter order of the
proposed method. The number of HMM states was set to 8.

Estimated vocal tract transfer function was represented as LPC
cepstrum of 32nd order, while source waveform was windowed by
Blackman window and represented as DFT cepstrum of 32nd or-
der. Then, for each vowel, LPC and DFT cepstrum centers were
calculated. The Euclidian distance from the center point in cep-
strum space (not including Oth coefficient) was calculated for each
sample. The mean squared distance may serve as an index for the

Table 1. Number of vowel samples used for the experiment.

vowel | a i u e [
number | 325 223 197 185 279

‘ ELP O0OAR-HMM Miterative AR-HMM
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Fig. 2. Variance of estimated vocal tract characteristics of each
Japanese vowel in the LPC cepstral space. Indicated as root mean
square (RMS) distance between each sample point and the center.

‘ ELP O0OAR-HMM MWiterative AR-HMM

RMS distance

Fig. 3. Variance of estimated source characteristics of each
Japanese vowel in the DFT cepstral space. Indicated as root mean
square (RMS) distance between each sample point and the center.

consistency of the analysis; smaller value indicates a better sepa-
ration of source and transfer function characteristics.

Figures 2 and 3 show root mean square distances for LPC cep-
strum (transfer function) and DFT cepstrum (source waveform),
respectively. Smallest value in LPC cepstral distance is clearly ob-
tained by the proposed method for every vowel. While, value in
DFT cepstral distance by the proposed method is similar to that
by the LP analysis. The larger values in DFT cepstrum by the
original AR-HMM are due to the increased freedom in the source
waveform modeling by HMM. The results implies that the acoustic
parameters extracted by the proposed method represent the source
and transfer function features well, and can be used for the “flexi-
ble” speech synthesis.

For further evaluation, standard deviations for /a/ sound by the
three methods are summarized for each cepstral coefficient. The
results are shown in Fig. 4 for LPC cepstrum and in Fig. 5 for DFT
cepstrum. It is clear the standard deviations of the first order rep-
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Fig. 4. Standard deviations of LPC cepstral coefficients for estimated vocal tract characteristics of vowel /a/. Numbers on the horizontal

axis indicate cepstral coefficient order.
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Fig. 5. Standard deviations of DFT cepstral coefficients for estimated source characteristics of vowel /a/.

resenting the spectral tilt are largely reduced for both cepstra. The
larger deviations for the LP analysis method and the original AR-
HMM model method are partly due to the fact that the AR filter
order is fixed in these methods. When speech sounds are viewed
within a fixed bandwidth, number of formant frequency varies and
AR filter order should be changed accordingly. The results indi-
cate that the recursive process introduced in the proposed method
can cope with this problem.

5. CONCLUSION

With the final goal of realizing “flexible” speech synthesis, a
source-filter analysis method was developed enabling a good sep-
aration of source and transfer function characteristics of speech
sounds. The method is based on recursively finding the transfer
function represented by a set of complex poles under the frame-
work of AR-HMM model. Validity of the method was experi-
mentally showed through analyses of Japanese vowel sounds in
continuous utterances. Further evaluation experiments are going
on for consonants. Also, hearing tests are planned for synthetic
speech, whose source parameters (such as FO) are varied from the
original values during the analysis-re-synthesis process by the pro-
posed method.
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