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Abstract 
An HMM-based method of detecting prosodic word 
boundaries was developed for Japanese continuous speech 
and was successfully integrated into a mora-basis continuous 
speech recognition system with two stages operating without 
and with prosodic information.  The method is based on 
modeling the fundamental frequency (F0) contour of input 
speech as transitions of mora-unit F0 contours and operates 
after receiving mora boundary information form the 1st stage 
of the recognition system.   The 1st and the 2nd stages use 
different mora bi-gram models as their language models: one 
trained not taking prosodic word boundary location into 
account and the other taking into account.   Because of 
perplexity reduction of the model from the 1st to the 2nd 
stages, an improved recognition result can be obtained from 
the 2nd stage.  In the current paper, the method is explained 
with experimental results.  Issues of grammar scale factor for 
the boundary detection and N-best scheme for the speech 
recognition are also included.  Improvements in mora 
recognition rates from the 1st to the 2nd stages were 
observable in both speaker-closed and –open experiments. 

1. Introduction 
As important features in human speech perception process, 
many researchers have tried to incorporate prosodic features 
into machine speech recognition process.   There may be 
roughly two possible ways to use prosodic features in speech 
recognition process.  One is to control acoustic features 
depending on the prosodic information, and the other is to 
detect prosodic events (prosodic boundaries, word accent 
types, speech acts, and so on) and to utilize them to control 
the speech recognition process.  The first way has a major 
problem in speaker dependency and complexity of the effect 
of prosodic features on acoustic features [1], but will not be 
addressed here.  The second way, to which the paper is 
related, also has two major problems: how to detect prosodic 
events accurately, and how to use them.    

The most straightforward (but naive) method of the second 
way is to find out prosodic boundaries only with prosodic 
features and to use them to segment input speech prior to the 
speech recognition process.  If the method properly works, it 
may largely increase recognition performance.  Although 
several methods have been tried from this viewpoint, they did 

not work well.  The major reasons are low boundary detection 
rates and large variations in boundary positioning by each 
speaker and for each utterance.  The boundary detection rates 
are not improved so much by totally looking at various 
prosodic events, such as fundamental frequency (F0) contour 
dips, phone duration lengthening, and so on, and/or by 
adopting statistical methods.  The results suggest that prosodic 
features are not enough; segmental information should also be 
utilized for boundary detection.  Since, in most continuous 
speech recognizers (decoders), two-pass algorithm is adopted, 
phoneme boundary information obtainable from the first pass 
can be cooperatively used to improve detection rates of 
prosodic boundaries.  The second pass decoding process can 
be facilitated by the boundary information.  The probabilistic 
factor of the prosodic boundary positioning may cause a 
hesitation in using prosodic information for speech recognition.  
However, we should note that the positioning is not a random 
process, and humans put boundaries only on possible locations, 
which correspond to some linguistic boundaries.   A possible 
and good way is to use prosodic boundaries only when they 
are clearly found.  A sophisticated answer to the problem was 
given as an efficient pruning during the decoding process [2].   

Although introduction of stochastic language modeling 
realized a significant progress in continuous speech 
recognition, it includes a problem that the modeling is trained 
only for written texts.   As outputs of human process of sound 
production, spoken sentences cannot be fully represented by 
written language grammars.  They are largely related to 
prosodic features, and, therefore, prosodic information can be 
utilized to cope with the problem.  The direct way is to 
construct a language model taking prosodic information into 
account.  Using prosodic information in a statistical 
framework may be beneficial in avoiding the final recognition 
result to be seriously affected by the wrong information.  The 
major difficulty along this line will be the collection of 
enough training corpora with prosodic information.  This 
problem can be partly solved by finding prosodic boundary 
positioning features for a small speech corpus and by placing 
prosodic boundaries in the text corpus for language model 
training according to the features [3].  Preliminary results 
showed rather large test set perplexity reduction.   

In the current paper, we summarize our work on mora 
transition modeling of F0 contours, developed through the 
above considerations [4, 5].  Unlike segmental features, 
modeling of F0 contours in frame units will not give a good 



result.  This is because prosodic features spread in wider 
ranges and should be treated in longer units.  Taking into 
account that "mora" is the basic unit of Japanese pronunciation 
(mostly coinciding with a syllable) and its relative F0 value is 
important for perceiving accent types and other prosodic 
events of Japanese, the modeling scheme was developed.  
Since the models are represented by state transitions time-
aligned to mora boundaries (segmental boundaries), they can 
be rather easily incorporated into phoneme-based speech 
recognition process.  The modeling in mora unit further has 
several advantages over frame-based modeling; it can be 
robust to F0 contour fluctuations, and it can be trained by a 
rather small sized speech corpus. 

To detect prosodic boundaries, input speech is first 
segmented into mora unit based on the phoneme boundary 
information obtained by the first stage of the recognition 
process.  Here, “stage” is used instead of “pass” in order to 
make it clear that the speech recognition system adopted in the 
current paper is different from ones for large vocabulary 
continuous speech as mentioned in section 3.1.  Then, the F0 
contour of input speech is represented as a sequence of 
prosodic word F0 contours, each of which is modeled as an 
HMM of mora F0 transitions.  Henceforth, this HMM is 
denoted as prosodic word model.  Prosodic word F0 contours 
are modeled separately for their accent types, and, therefore, 
accent type information is obtainable together with prosodic 
word boundary information.   Here, “prosodic word” is a basic 
prosodic unit defined as a word or a word chunk 
corresponding to an accent component, which is also called as 
“accent phrase.”   A prosodic word mostly coincides with a 
“bunsetsu,” a basic unit of Japanese language consisting of 
independent word(s) followed by particle(s), and, thus, its 
boundary information can be utilized to facilitate the 
recognition process.   

Two versions of mora bi-gram are used in the 1st stage 
and the 2nd stage as language models.  The 2nd stage uses the 
mora bi-gram trained after segmenting the text corpus into 
prosodic words, while the 1st stage uses the mora bi-gram 
trained before segmentation.  Perplexity reduction from the 
model for the 1st stage to that for the 2nd stage leads to an 
improvement of final recognition results. 

In the current paper, after a brief explanation on the 
modeling, the method of prosodic word boundary detection is 
first explained.  Then, incorporation of the method into a 
continuous speech recognition system is introduced.  Finally, 
grammar scale factor (weight of likelihood of prosodic word 
accent type bi-gram to that of prosodic word model) in the 
boundary detection process and N-best scheme in the 
recognition process are discussed with some experimental 
results. 

2. Modeling and prosodic word boundary 
detection 

2.1.  Outlines 

Figure 1 schematically shows the process of prosodic word 
boundary detection (and accent type recognition) using the 
mora F0 contour transition models of prosodic word F0 
contours. In the method, mora F0 contours obtained by 
segmenting sentence F0 contours according to mora boundary 
locations are represented by pairs of codes: one for 

representing the contour shape (shape code) and the other 
representing the average F0 shift from the preceding mora 
(∆F0 code) [6].  Prosodic word F0 contours are grouped 
depending on their accent types and presence/absence of 
succeeding pauses, and each group is represented by a 
discrete HMM of mora F0 transitions.  When a mora F0 
contour is represented by a set of parameters such as F0 
slopes instead of codes, an HMM of continuous distribution 
can be introduced to model each group.  The experimental 
results, however, showed no significant improvement, and use 
of continuous density HMM’s is not regarded hereafter.     
The prosodic word models are matched against input 
utterances to obtain prosodic word sequences with their 
accent types.  Since an input utterance is represented as a 
sequence of prosodic words, prosodic word boundaries can be 
detected.  As for the grammar of the matching process, 
prosodic word bi-gram was trained and utilized.  Here, we 
should note that the bi-gram used in the boundary detection 
process is somewhat different from that used in the 
recognition process; it is for prosodic contents (accent types), 
not for linguistic contents. 
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Figure 1: Prosodic word (accent phrase) boundary detection 
and accent type recognition based on the statistical modeling 

of mora F0 contour transitions. 

2.2.  Shape Coding  

Each mora F0 contour may differ in length and in frequency 
range, and should be normalized prior to the shape coding.  
Currently, normalization was conducted simply by shifting 
the average value of a mora F0 contour to zero and by linearly 
warping the contour to a fixed length.  Since the derivative of 
an F0 contour is an important feature characterizing prosodic 
events, it was preserved during the warping process by 
conducting the same warping also along the log-frequency 
axis. 

After selecting mora F0 contours without voiceless parts 
from the training data shown in section 2.6 (16434 samples for 
speaker MYI, and 18338 samples for speaker MHT), 
clustering was conducted using the LBG algorithm.  Distance 



between two normalized mora F0 contours was calculated as 
the difference in logarithmic F0 values for corresponding 
points averaged over the whole period of mora F0 contours.  
Through a preliminary experiment of boundary detection 
changing the codebook size from 4 to 256, 32 clusters were 
finally selected.  They are henceforth called as codes 3 to 34.  
Two additional codes 1 and 2 were also prepared for pauses 
and voiceless morae, respectively.  Here, voiceless mora is 
defined as that whose voiced portion does not exceed 20 % of 
the whole length.  These 34 codes were assigned to mora F0 
contours of input speech.  Assignment of codes 3 to 34 was 
done simply by the minimum distance basis.  Voiceless 
periods, which might be included in mora F0 contours of input 
speech, were excluded from the distance calculation.  In order 
to take pause length into account, a pause was divided into 
100 ms segments and code 1 was assigned to all of them.  
Code 1 was also assigned to the last segment in a pause, which 
might be shorter than 100 ms.  Segments with code 1 should 
be denoted as pause morae hereafter for ease of explanation.  
Also, morae with codes 3 to 34 will be denoted as voiced 
morae. 

2.3.  ∆F0 Codes 

Clustering for ∆F0 codes was conducted by selecting pairs of 
voiced morae adjacent to each other form the same corpus as 
used in the shape code clustering.  After calculating average 
log F0 for the voiced portion of each mora, differences 
between the averages of the first to the second morae were 
calculated for all the selected pairs.  Then, the LBG algorithm 
was used to obtain 32 clusters, to which codes 5 to 36 were 
assigned.  Codes 1 to 4 were reserved to represent pairs of 
morae when one or both of morae were voiceless (or pause) 
morae as follows: 

• Code 1: both the first and second morae were pause 
morae. 

• Code 2: only the second mora was pause mora. 

• Code 3: only the first mora was pause mora. 

• Code 4: at least on of two morae was voiceless mora. 

These 36 codes were assigned to mora F0 contours of input 
speech. 

2.4.  Prosodic Word Models 

In the Tokyo dialect of Japanese, an m-mora word is uttered 
with one of m+1 accent types, which are usually denoted as 
type i (i=0~m) accents and are distinguishable to each other 
from their high-low combinations of F0 contours of the 
consisting morae.  Letter "i" indicates the dominant downfall 
in F0 contour occurring at the end of ith mora.  Type 0 accent 
shows no apparent downfall. 

The following 7 models were trained in the discrete HMM 
framework using HTK software.  Training was conducted by 
EM algorithm. 

• T0 and T0-P models: for type 0 (or type n) prosodic 
words, 

• T1 and T1-P models: for type1 prosodic words, 

• TN and TN-P models: for types 2 to n-1 prosodic words, 

• P model: for pauses. 

T0, T1 and TN models are for prosodic words not followed by 
a pause, while T0-P, T1-P and TN-P are for prosodic words 
followed by a pause.  "P model" was prepared to absorb pause 
periods in an utterance, though a pause is actually not a 
prosodic word.  Figure 2 shows the HMM topologies, which 
were selected by taking the F0 contour features of Japanese 
into consideration.  A double code-book scheme was adopted 
to assign a pair of shape and ∆F0 codes to each mora F0 
contours.  The stream weights for shape codes and ∆F0 codes 
were set to 1 for the current experiments. 
 

T0, T0_P, T1, T1_PP TN, TN_P

Figure 2: HMM topologies for prosodic word F0 models. 

2.5.  Grammar for prosodic words 

The prosodic word bi-gram was calculated using the same 
training data for the prosodic word models to be served as a 
grammar of prosodic word sequences in the boundary 
detection process.  Weight of the language model (prosodic 
word bi-gram) likelihood to the acoustic model (prosodic 
word model) likelihood was set to 1 in sections 2 and 3. 

2.6.  Detection of prosodic word boundaries 

In order to conduct boundary detection experiments in 
speaker-closed and -open conditions, utterances of two male 
speakers were selected from ATR continuous speech corpus 
and were divided into training and testing data sets as 
follows: 

• T(MYI): training data of 450 utterances by speaker MYI, 
including 3,023 prosodic words and 586 pauses. 

• R(MYI): testing data of 50 utterances by speaker MYI, 
including  326 prosodic words and 70 pauses. 

• T(MHT): training data of 450 utterances by speaker 
MHT, including 3,167 prosodic words and 915 pauses. 

• R(MHT): testing data of 50 utterances by speaker MHT, 
including  325 prosodic words and 99 pauses. 

Lexical contents of both speakers’ utterances are identical for 
training and for testing data.  As already mentioned, training 
data (T) were used not only to train prosodic word models, but 
also to cluster shape and ∆F0 codes, and to calculate prosodic 
word bi-gram.  Since prosodic labels necessary for the 
experiments, such as lexical accent types and prosodic word 
boundaries, are not included in the data by speaker MHT, they 
are converted from tone and break indices of J-ToBI labels [7] 
attached to the data.  Strictly speaking, this means the 
prosodic labels used for the experiments are not assigned 
based on the same criterion for two speakers, leading to a 
degradation of the detection performances. 

Mora boundaries were detected by the forced alignment 
using tri-phone HMMs explained later in section 3.1.  The 
following four combinations of the training and testing data 
were selected for the boundary detection experiments: 



(a) T(MYI) for training and R(MYI) for testing. 

(b) T(MHT) for training and R(MHT) for testing. 

(c) T(MHT) for training and R(MYI) for testing. 

(d) T(MYI) for training and R(MHT) for testing. 

Cases (a) and (b) are for speaker-closed experiments, while 
cases (c) and (d) for speaker-open experiments. 

Detection rate Rd and insertion error rate Ri for prosodic 
word boundaries are respectively defined as follows: 

Rd = Ncor/Nbou                (1) 

Ri = Nins/Nbou                 (2) 

Here, Nbou, Ncor and Nins indicate the numbers of total prosodic 
word boundaries in the test data, boundaries detected inside 
the ±100 ms region from the correct position and insertion 
errors, respectively. 

Table 1 shows the boundary detection results where mora 
boundary information is obtained through the forced 
alignment process using the same tri-phone set explained in 
section 3.   

Table 1: Results of prosodic word boundary detection. 

Experiment Rd (%) Ri (%) 

(a) T(MYI) and R(MYI) 
(b) T(MHT) and R(MHT) 

72.70 
75.38 

12.27 
12.31 

(c) T(MHT) and R(MYI) 
(b) T(MYI) and R(MHT) 

70.25 
73.85 

11.66 
14.77 

 

3. Integration and continuous speech 
recognition 

3.1. Outlines 

The boundary detection method was integrated to a 
continuous speech recognition system as shown in Fig. 3.  
The system is different from widely used large vocabulary 
continuous speech recognition systems in that it is based on 
mora recognition and does not have a word lexicon.   This is 
because the major aim of the current work is to clarify the 
effects of using prosodically obtainable word boundary 
information in speech recognition.  In the system, mora 
recognition was conducted twice using differently trained 
mora bi-grams as the grammar [6].  The first stage operates 
with mora bi-gram trained in sentence unit (not taking word 
boundaries into account) and the resulting information on 
mora boundary location is fed to the process of prosodic word 
boundary detection.  In the second stage, input speech is first 
segmented into prosodic words using the prosodic word 
boundary information thus obtained, and then mora 
recognition is re-conducted using mora bi-gram trained in the 
unit of prosodic word.  All the recognition process is 
programmed using HTK software Ver.2.1.  Conditions of 
acoustic analysis are summarized in Table. 2.   

The following items were arranged for the both stages: 

• Mora dictionary consisting of all possible Japanese morae 
(125 morae).  Pause period SP is also included. 

• Phoneme HMMs selected from Japanese tri-phone 
models trained as "Basic Dictation Software for 
Japanese," developed under an IPA project [8].  

• Two types of mora bi-gram as the language models as 
mentioned above: one obtained without taking prosodic 
word boundaries into account and the other obtained with 
taking them into account.  In the latter model, at the 
beginning of a prosodic word, “boundary+mora” is 
counted, and, at the end, “mora+boundary” is counted.  
The former one was used in the first stage of the 
recognition and the latter in the second stage.  The bi-
gram was constructed by the back-off smoothing 
technique using the same database used for the prosodic 
word model training.  Mora bi-gram perplexities were 
around 40 to 42 for the first stage, while they were 
around 29 for the second stage.  The perplexity reduction 
from the first stage to the second stage indicates the 
possibility of better recognition results when prosodic 
word boundary information is used.  Here, we should 
note that, if prosodic word boundaries are assumed after 
every 5th morae (average mora length of prosodic words), 
the perplexity reduction is not observable. 
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Figure 3: Two-stage speech recognition system with 
prosodic word boundary detection process. 

Table 2: Conditions of acoustic analysis for speech 
recognition. 

Sampling frequency 
Analysis window  
 
Frame shift 
Pre-emphasis coefficient 
Feature parameters 
 
Filter banks 
Cepstram subtraction 

20 kHz 
25 ms  

Hamming window 
10 ms 
0.97 
12 MFCC + 12 ∆MFCC

 + ∆power 
24 channels 
For each utterance 

 

3.2. Experimental results 

Mora recognition experiments were conducted for cases (a) 
through (d) in section 2.6.  Their results are shown in Fig. 4, 
where mora recognition rate C is defined as: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Mora recognition rates as functions of grammar 
scale factor before and after the second stage. 

 

C = (Nall – Ndel – Nsub – Nins)/Nall           (3)  

Here, Nall, Ndet, Nsub and Nins respectively represent total 
number of morae, number of deletions, number of 

substitutions and number of insertions.  Suffices a, b, c, d to C 
indicate “after second pass,” “after first pass,” “after second 
pass when correct boundary information being supplied,” 
“after second pass when boundary information of Table 1 
being used,” respectively.  Horizontal axis of the figure is the 
grammar (mora bi-gram) scale factor S, which means that the 
log-likelihood is multiplied by the factor S before combining it 
with acoustic likelihood.   Although different scale factors are 
possible for the first and second passes, they are set equal in 
the current experiments.  If we set the factor S to 7, Ca 
outperforms by few percent from Cb for cases (a) and (d), 
indicating the validity of the proposed method in speech 
recognition.  In the cases (b) and (c), improvements in the 
recognition rates are not clear, but the use of prosodic word 
boundary still has no negative effect on speech recognition.  
When the factor S is increased, the recognition rates decreases 
and Ca has a value smaller than Cb. 
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3.3. Considerations on language model weighting and N-
best scheme 

Language model weight for boundary detection 

Although, in the prosodic word boundary detection of the 
preceding sections, the grammar scale factor Sacc (weight of 
log-likelihood of the prosodic word bi-gram to that of the 
prosodic word model) was set to 1, it can be changed to 
obtain better results.  Generally, if it is reduced, insertion 
errors come dominant, and, conversely, if it is increased, 
deletion errors come dominant.  Recognition experiments 
were conducted as indicated in section 3 for cases (a) and (b) 
of section 2.6 (speaker-closed cases), and the mora 
recognition rates Ca’s were obtained as listed in Table 3.  The 
grammar scale factor S for the first and second passes of the 
recognition process was varied through the experiments to 
obtain the best results.   Case (a) results and case (b) results in 
the table were obtained when S=5 and S=6, respectively.   
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Table 3: Mora recognition rates in for various prosodic word 
bi-gram weights. 

Mora recognition rate (%) Prosodic word bi-
gram weight Sacc (a) MYI (b) MHT 

0.1 69.8 75.0 
1.0 70.9 75.3 
3.0 71.9 75.9 
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3.4. Introduction of N-best scheme 

In continuous speech recognition, it was reported that 
recognition results would be improved by taking N-bests into 
account [9].  In our experiment, 2-bests were taken into 
account for the 1st stage mora recognition results and also for 
prosodic word boundary detection results.  Among 4 sentence 
candidates obtained as combinations of the above 2-bests, the 
one with largest score was selected.  Here, the score is 
defined as sum of the likelihood of each constituting mora. 
Table 4. compares the mora recognition rates Ca’s of the 1-
best scheme and the N-best scheme of this section.  The 
grammar scale factor for the prosodic word boundary 



detection Sacc was set to 3.  The figure clearly indicates 
improvements by the N-gram scheme.   

Table 4: Comparison of mora recognition rates with and 
without N-best scheme for various mora bi-gram weights 

(grammar scale factors).  

Mora recognition rate (%) 
(a) MYI  (b) MHT 

Mora 
bi-gram 
weight 

S 1-best N-best 1-best N-best 

4 71.0 71.5 74.6 75.1 
5 71.9 72.2 75.4 76.0 
6 70.9 71.6 75.9 76.6 
7 71.1 71.8 75.9 76.7 
8 71.4 72.1 75.0 75.5 
9 70.7 71.3 74.1 74.7 

  

4. Conclusions 
A method of prosodic word boundary detection is presented 
using a statistical modeling of mora transitions of prosodic 
word F0 contours.  The method is successfully integrated in a 
2-stage continuous speech recognition process, where mora 
bi-grams are differently trained are used in the 1st stage and 
the 2nd stage; without prosodic word boundary information 
for the 1st stage, and with prosodic word boundary 
information for the 2nd stage.  Issues of grammar scale 
factors for the prosodic boundary detection and N-gram 
selection are addressed.  Finally, an improvement in mora 
recognition rate from 74.5% to 76.7 % is obtained due to the 
use of prosodic features.   
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