
Developments of Anthropomorphic Dialog Agent: A Plan
and Development and its Significance

Shin-ichi Kawamoto*1, Hiroshi Shimodaira*1, Shigeki Sagayama*1,2, Tsuneo Nitta*3, Takuya
Nishimoto*4, Satoshi Nakamura*5, Katsunobu Itou*6, Shigeo Morishima*7, Tatsuo Yotsukura*7,

Atsuhiko Kai *8, Akinobu Lee*9, Yoichi Yamashita*10,
Takao Kobayashi*11, Keiichi Tokuda *12, Teikichi Hirose*2, Nobuaki Minematsu*2, Atsushi

Yamada*13, Yasuharu Den*14, Takehito Utsuro*3
*1 JAIST, *2 Univ. Tokyo, *3 Toyohashi Univ. of Tech., *4 Kyoto Inst. of Tech, *5 ATR,
*6 AIST, *7 Seikei Univ., *8 Shizuoka Univ., *9 NAIST, *10 Ritsumeikan Univ.,
*11 Tokyo Inst. of Tech., *12 Nagoya Inst. of Tech., *13 ASTEM, *14 Chiba Univ.

1 Abstract
With financial support from Japan's Information-technology
Promotion Agency (IPA), a three-year project was launched
in 2000 to develop the basic software for an
anthropomorphic spoken dialog agent. The basic software
consists of four modules for speech recognition, speech
synthesis, facial image synthesis, and multi-modal dialog
integration. This interim report describes the basic design
approach and an implementation of the software focusing
on efforts to ensure the interactive capability of the spoken
dialog agent.

1.1 Keywords

2 Introduction
With financial sup port provided by the Information -
technology Promotion Agency (IPA), a three-year project
was launched in April 2000 to develop the basic software
for an anthropomorphic spoken dialog agent[1]. The basic
software consists of four modules for speech recognition,
speech synthesis, facial image synthesis, and multi-modal
dialog integration.

System control and data management capabilities in a
dispersed environment are essential in order for these
various modules to interoperate smoothly as a single dialog
system, and several systems exhibiting these capabilities
have been developed including DARPA's Communicator
Program [7] based on MIT's Galaxy-III [6], and the Open
Agent Architecture (OAA) developed by SRI [8].

This paper describes the basic design and an
implementation of the project software that is intuitive, easy
to understand, and ensures fully interactive spoken dialog
with the agent.

2. Development of Basic Software for
Anthropomorphic Spoken Dialog Agents
2.1 Development Overview
Considering how much faster computers are able to crunch
numbers and deal with complex calculations than people,
why is that they are incapable of communicating by speech
with humans? Just what would it take to enable computers
to speak in the same way that people talk among

themselves? As the technological foundation for such
communications, research so far as focused on such dream
technologies as "apprehending speech," "synthesizing
speech," and "generating computer graphic representations
of real people." Practical success h as recently been
achieved in applying speech recognition and speech
synthesis technologies to synthetic voice reading. It is also
now possible as we are already beginning to see in movies
to render the realistic movement of actors and actresses
with computer graphics. Basic technologies to achieve these
sorts of human interfaces have been advanced to a certain
level, and research is now concentrating on refining and
improving the quality of these capabilities even more.
Finally, considerable R&D is also seeking to integrate these
technologies to create interfaces and systems that are
capable of sustained dialog similar to that between people.

Being actively involved in these developments, the Multi-
modal Tool Working Group of the Special Interest Group
on S poken Language Processing of the Information
Processing Society of Japan (IPSJ SIG-SLP) over the three-
year period from 1998 to 2000 identified anthropomorphic
agents as a target of next-generation research, and they have
developed a plan to build and make publicly available a
research platform through collaborative efforts of
researchers.

This conception received support of the Information -
technology Promotion Agency (IPA), and more than ten
research institutes began a cooperative effort to develop the
basic software in March 2000.

2.2 Software Configuration
The anthropomorphic spoken dialog agent that is now under
development consists of four basic software modules, all of
which will be made available in the form of freeware. By
implementing the software as separate modules, this is not
only an effective tool for assessing the various constituent
technologies, it also provides a versatile R&D platform
making it easy to build original dialog systems by simply
plugging in different software modules develope d
independently by the different R&D institutes involved in
the project as required.

Figure 1 Anthropomorphic spoken dialog agent
platform

2.2.1 Basic Software for Integrating Anthropomorphic
Spoken Dialog Agents
New basic software is being developed to integrate and
control the dialog component modules and to manage the
dialog. Some of the specific projects that are currently
under way include (a) an Agent Manager (AM) providing
low-level control of the speech recognition, speech
synthesis, facial image synthesis, and other modules; (b) the
capability to interpret VoiceXML-based high-level dialog
descriptions; (c) a Task Manager (TM) for controlling
dialog using the functions provided by the AM; and (d) a
prototyping tool to provide a GUI environment supporting
the setting of parameters and the description and control of
scenarios, all things that are necessary to construct dialog
systems.

In this paper we will address the issues involved in
designing a dialog system from the standpoint of the Agent
Manager, and present an implementation example.

2.2.2 Basic Software of Synthesizing Dialog Speech
New basic speech synthesis software is being developed
that not only clearly reads sentences of mixed kanji and
kana (Chinese characters and phonetic script), but also
shares data to enable synchronization with a facial image.
This enables lip-sync, the synchronization of sound and
motion so the facial movements of speech coincide with the
sounds.

Furthermore, anticipating changes in the nature of the
speech to reflect different circumstances or the intent of the
speaker, we are also seeking ways to control a range of
different emotions and speech rhythms.

Figure 2 Speech synthesis module

2.2.3 Basic Software for Dialog Speech Recognition
Building on the software that came out of the IPA's basic
Japanese dictation software development project from April
1997 to March 2000, it should be easy enough to extend the
capabilities of that software package to accommodate
dialog processing and implement flexible co ntrol.
Specifically, we are doing away with grammar -based
recognision and recognition results, and developing
functions that can deal with unnecessary words and poses,
and can provide dynamic control of recognition processing.

2.2.4 Basic Software for Fac ial Image Synthesis and
Control
Starting with the IPA's facial image processing system for
the human-like kansei agent that was developed from June
1995 to March 1998, we are enhancing the software
package to support higher quality agent facial image
synthesis, animation control, and precise lip -sync with
synthetic and natural speech. Some of the specific
enhancements include a GUI able to map standard wire
frames to images of heads shot from different angles to
easily generate 3D models of human heads, sharing of data
with the speech synthesis module, more precise lip-sync,

the ability to add any facial expressions, and the ability to
control nodding and blinking.

Figure 3 Facial image synthesis module

3. Basic Design of Module Integration Processing
3.1 Relationship Between the Agent Manager and
Modules
The Agent Manager (AM) consists of two functional layers:
the Direct Control Layer and the Macro Control Layer.
Figure 4 shows a schematic representation of the
relationship between the AM and the various modules.

The Direct Control Layer (AM-DCL) directly controls the
sets of commands that are defined for each module, and the
various modules are able to communicate with other
modules through this layer. The Macro Control Layer (AM-
MCL) interfaces mainly with the Task Manager (TM). By
redefining frequently used sequential command sets as
macro commands and by taking on inter -module
synchronization management and similar low-level module
control, the AM-MCL markedly improves operation of the
system from the standpoint of the Task Manager.

In principle, the Speech Recognition Module (SRM), and
Speech Synthesis Module (SSM), and the Facial Image
Synthesis Module (FSM) communicate through the AM-
DCL. This means that, in developing a module, one only
needs to worry about communication with the AM. This is a
major benefit for the present project, because it allows the
various modules to be developed at separate locations of
the participating R&D firms.

The Task Manager (TM) mainly communicates through the
AM-MCL, but if necessary can also communicate with the
AM-DCL just like the other modules. All the output from

the various modules is supplied to the TM. The TM is thus
able selectively adopt whatever data that it needs from
among the totality of data that it receives from all the
modules.

Figure 4 Basic configuration of the Agent
Manager and Modules

3.2 Virtual Machine Models
In defining the command specifications for communicating
between the dialog integration module and the various
dialog component modules, the dialog component modules
are treated as virtual machine models. For example, Fig. 5
illustrates the relationship between the Agent Manager
(AM-DCL) and a virtual machine model.

Figure 5 Relationship between the Agent
Manager and a virtual machine model

The dialog component modules are managed by defining a
parameter slot for each input and output parameter. The
macro command definitions in the dialog component
modules are managed in a similar way using macro slots.
These slots are shared with the AM-DCL, and it is through
the slots that the AM-DCL communicates with the dialog
component modules.

Each slot possesses a value and a property that are treated
like virtual machine model switches, and the slots are
activated by common commands. The slot values can effect
various actions; they can monitor an operating state, direct
that an action start or stop, set a particular operating
environment, and so forth. Changing the value of slot is
immediately reflected in the form of a different action. In
other words, changing a slot value is instantly associated
with a particular action.

This makes it possible to manipulate all the dialog
component modules in a centrally coordinated fashion.
Commands are communication specifications that are not
dependent on any particular module, while the parameter
slots are module -dependent specifications that are not
dependent on communication. This means that the
difference between dialog component modules is nothing
more than the different functions programmed in their
parameter slots. And by abstracting and treating the dialog
component modules as virtual machine models, this makes
it very easy to either expand functional capabilities or add
more dialog component modules. For example, a new
function could be added by simply adding a new parameter
slot to the virtual machine model. And like the dialog
component modules that are already defined, new dialog
component modules are added based on the concept of the
virtual machine model by simply defining parameter slots.

Imagine, for example, that we want to add a facial
expression recognition module. The minimal framework for
incorporating such a module into the system would involve
the definition of a number of parameter slots: (a) a
parameter slot to start the module that is based on common
specifications, (b) a parameter slot relating to the output of
facial expression recognition results, (c) a parameter slot
specifying a recognition algorithm, and (d) a parameter slot
specifying the model. Or suppose we want to extend the
speech analysis capabilities of a speech recognition module
by enabling it to acquire a basic frequency of F0. This
could be easily accomplished using the virtual machine
model by adding a parameter slot to set the basic frequency
output and a parameter slot to specify a basic frequency
sampling algorithm.

3.3 Basic Operating Commands for a General -
Purpose Virtual Model
Table 1 shows a list of commands that could be used in the
basic operation of a general-purpose virtual module.

Two types of identifiers listed in Table 2 can be appended
to slot values, etc. that are output from modules.

3.4 Problem of Synchronization Between Modules
and an Implementation Example
Basically, each module is designed to operate
independently of other modules, and is managed using the
basic commands that were discussed earlier in the section
on the Agent Manager. However, processing in some cases
requires synchronization between modules. The most
obvious example is lip -sync; when an anthropomorphic
agent speaks, it is essential that the animated movement of
the lips coincide with the synthesized or natural speech. In
order to achieve such synchronization, data must be shared
by two modules. Taking lip-sync as an example, here we
will explain in greater detail how synchronizati on is
achieved.

Table 1 Names and functions of basic operating
commands for a general -purpose virtual
module

Name Function

set Set a parameter slot value.

def Set a macro slot value.

inq Inquire a slot value.

prop Set a slot property.

save Apply a di fferent name to the current slot and
save.

rest Restore the slot value that was saved with the
save command.

del Delete the slot value that was saved with the
save command.

do Evaluate macro slot value or file contents.

Table 2 Names and functions of i dentifiers that
can be appended to slot values that are output
from modules

Name Function

rep Slot value output.

tell Output of value not defined as a slot.

3.5 Communication Between Modules to Achieve
Synchronization
Synchronization between a speech synthesis module and a
facial image synthesis module might be achieved
�

by communication over a direct connection that is set
up between the two modules, or

�
in the same way as other communication, via the
Agent Manager.

Note that while this example only involves synchronization
between two modules, the first method would require a
synchronization management capability in which every
module was aware of every other module. This would make

the modules more interdependent while at the same time
diminishing their autonomy.

In the second method, synchronization between the two
modules is managed by the AM. While this increases the
processing costs, it makes it easier to maintain the
autonomy of the modules since designers only have to
concern themselves with c ommunication between the
module and the AM.

Because our current priority is to make it easier to ensure
the autonomy of modules, we are proceeding on the basis of
the second approach.

The actual synchronization indicator that defines the exact
timing when speech begins and so on is achieved by
conveying the system time to the two modules. Very
accurate synchronization is achieved using the Network
Time Protocol (NTP) that was developed for system time
synchronization across networks.

3.6 Data Sharing Bet ween Modules for
Synchronization
Management of the synchronization between the two
modules might be implemented by a higher level module
that is separate and distinct from the AM. We are also
considering defining and implementing a new type of
module that is dedicated exclusively to synchronization.
However, considering the importance of the lip -sync
capability for agents and how frequently such capability is
used in spoken dialog, we have currently implemented this
function using a macro command provided by the Agent
Manager.

The essential data that is needed for lip-sync when an agent
speaks is the durations of each phoneme making up the
speech. This information is obtained by interrogating the
speech synthesis module. One might be able to think of
other kinds of information that would be useful in this
context, but for the time being we only use the duration of
each phoneme.

It is also necessary to verify that the two modules are ready
to speak before speaking can actually begin. This
information is obtained by the following procedure. The
speech process is divided into two parts: prepare to speak
and begin to speak. The modules are designed to
automatically generate a message indicating that they are
ready to speak. As soon as the Agent Manager detects this
information from the two modules, the AM directs that they
can actually begin speaking.

Figure 6 shows the sequence of commands involved in this
process. Note that the commands triggering these sequential
processes are actually implemented by the macro command
function in the AM-MCL.

4. Conclusions
This paper described the design and an implementation of
the basic software for an anthropomorphic spoken dialog
agent that ensures interactiveness, a project sponsored by
Japan's Information-technology Promotion Agency (IPA).

Considering that this is an interim report on a system that is
currently under development, there are a number of
unresolved issues that still need to be worked out. As the
project unfolds, we will further expand and enhance the
functions of the dialog component modules and the multi-
modal dialog integration module, and explore the feasibility
of incorporating a standard distributed object environment
architecture such as CORBA.

Figure 6 Processing flow between AM, SSM,
and FSM when an agent speaks

Acknowledgments
Part of this work is supported by the Information -
technology Promotion Agency's program to support original
information technology.

REFERENCES
1. Shigeki Sagayama and Satoshi Nakamura:

Development of Anthropomorphic Dialogue Agent: a
Plan and Its Significance . Information Processing
Society of Japan, Technical Report 2000-SLP-33-1,
Oct. 2000 (In Japanese).

2. Stephenie Seneff, Ed Hurley, Raymond Lau, Christine
Pao, Philipp Schmid and Victor Zue: GALAXY -II: A
Referece Architecture for Conversational System
Development. In ICSLP-1998, pp.931--934, 1998.

3. DARPA Communicator Program, 1998.
http://fofoca.mitre.org/.

4. OAA (The Open Agent Architecture).
http://www.ai.sri.com/~oaa/.

5. CORBA (The Common Object Request Broker
Architecture). http://www.corba.org/.

