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ABSTRACT

This paper introduces a novel model-constrained, data-driven
method for generating fundamental frequency contours in
Japanese text-to-speech synthesis. In the training phase, the
parameters of a command-response F0 contour generation
model are learned by a prediction module, which can be
a neural network or a set of binary regression trees. The
input features consist of linguistic information related to ac-
centual phrases that can be automatically derived from text,
such as the position of the accentual phrase in the utter-
ance, number of morae, accent type, and parts-of-speech. In
the synthesis phase, the prediction module is used to gen-
erate appropriate values of model parameters. The use of
the parametric model restricts the degrees of freedom of the
problem, facilitating data-driven learning. Experimental re-
sults show that the method makes it possible to generate
quite natural F0 contours with a relatively small training
database.

1. INTRODUCTION

One of the most important and difficult problems in current
text-to-speech (TTS) systems is the generation of natural-
sounding F0 contours from text. Whereas rule-based meth-
ods have provided suboptimal but accepted solutions for
many years, the increasing availability of fast and low-cost
hardware, as well as the advent of databases containing prosodic
information (prosodic databases) have paved the way for
data-driven approaches to intonation modeling.

However, the construction of prosodic databases is in
general labor-expensive due to the great amount of hand
work involved in the labeling process, and data-driven ap-
proaches proposed so far have not been successful in achiev-
ing efficient utilization of training data resources.

In this paper, we propose an efficient data-driven method
for F0 contour modeling and generation based on a para-
metric command-response model (hereinafter referred to as
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the F0 model [1]), whose parameters are predicted by a pre-
diction module. The idea is to utilize a model instead of
dealing directly with the F0 contour in order to bridge the
gap between linguistic and prosodic features. The model
would create constraints to reduce degrees of freedom and
improve learning efficiency.

The F0 model has been widely used in rule-based TTS
systems due to the good correspondence between its param-
eters and syntactic features, which suggests the existence of
a mapping that can be statistically modeled. Another ad-
vantage of the model is the small number of parameters re-
quired to represent F0 contours, which potentially improves
the efficiency of data-driven learning methods. The use of
the F0 model combined with learning techniques has al-
ready been proposed in other works[2][3], but they require
parameters that cannot be easily obtained automatically as
the input of a TTS system. In the present work, the input pa-
rameters contain only information that can be automatically
derived from text.

The following sections explain details of the proposed
method. Section 2 contains a brief description of the F0
model. Section 3 describes howF0 contours are parametrized
using the F0 model, specifying the input and output features
of the prediction module. Section 4 contains a description
of the prosodic database used. Section 5 describes the two
learning methods used – neural networks and binary regres-
sion trees –, and shows the results of some evaluation exper-
iments. Finally, informal listening tests comparing gener-
ated F0 contours are described in Section 6, and some com-
ments and additional remarks are given in Section 7.

2. PARAMETRIC REPRESENTATION OF F0
CONTOURS USING THE F0 MODEL

The F0 model [1] is a command-response model that de-
scribes F0 contours in logarithmic scale as the superposition
of phrase and accent components. The phrase component
is generated by a second-order, critically-damped linear fil-
ter in response to an impulse called phrase command, and



the accent component is generated by another second-order,
critically-damped linear filter in response to a step function
called accent command. The F0 model is given by the fol-
lowing equation:

lnF0 = lnFmin+PI

i=1 ApiGpi(t� T0i)+PJ

j=1 AajfGaj(t� T1j)+

�Gaj(t� T2j)g

(1)

In the equation above, Gpi(t) and Gaj(t) represent re-
spectively phrase and accent components. Fmin is the bias
level, I is the number of phrase commands, J is the number
of accent commands, Api is the magnitude of the ith phrase
command, Aaj is the amplitude of the jth accent command,
T0i is the instant of the ith phrase command, T1j is the be-
ginning of the jth accent command, and T2j is the end of the
jth accent command. The F0 model also makes use of other
parameters (�i and �j) to express Gpi and Gaj , but in this
work they are respectively fixed at 3.0 and 15.0. The bias
level Fmin is fixed at 51.0 Hz for the voice of the speaker
used in the experiments.

3. INPUT AND OUTPUT FEATURES

The input features to the prediction module consist of in-
formation that can be automatically extracted from text in
synthesis time. They are related to accentual phrases, so the
module assumes that the text has been previously split into
accentual phrases. In a rule-based system, typical features
used to determine the value of F0 model parameters are:
position of accentual phrases, number of morae in the ac-
centual phrase, parts-of-speech, time elapsed since the last
command, etc. In the present paper, the input features used
are listed in Table 1.

In the table, position of the accentual phrase refers to its
position in the sentence. Mora is a rhythmic unit in Japanese
similar to a syllable, and the accent type classification is
based on the position of the mora containing an F0 downfall
(accent nucleus). An accentual phrase is of type 1 when the
accent nucleus is located on the first mora, and so on. An
accentual phrase that does not contain an accent nucleus is
classified as type 0. The term “word” refers to the smallest
meaningful unit in Japanese grammar. An accentual phrase
is usually made up of one or more words. A word can be
classified according to its part-of-speech (POS), and some
POS classes admit multiple conjugations (7). We selected
as input features the POS and conjugation of the first and
last words of the accentual phrase, which can be considered
the most relevant.

Table 2 contains the list of output features to be pre-
dicted by the prediction module. The indices i and j are
eliminated from the notation, since the prediction occurs

Table 1. Accentual phrase features used as inputs to the
prediction module

Input feature Maximum value

Position of 18
accentual phrase
No. of morae 15
Accent type 9
No. of words 8
POS of first 21
word
Conjugation of 7
of first word
POS of last 21
word
Conjugation of 7
last word

individually for each accent command, which may be pre-
ceded or not by a phrase command.

Table 2. Output features of the prediction module
Output feature Symbol

Phrase command magnitude Ap

Accent command amplitude Aa

Offset of T0 t0off
Offset of T1 t1off
Offset of T2 t2off
Phrase command flag PF

In the table, t0off is the offset of T0 with respect to
the segmental beginning of the accentual phrase. t1off and
t2off are respectively offsets of T1 and T2 with respect to
segmental anchor points. These anchor points are respec-
tively defined as the beginning of the first high mora for
t1off , and the end of the mora containing the accent nu-
cleus for t2off . The first high mora of the accentual phrase
is either the first mora for accentual phrases of type 1, or
the second mora for accentual phrases of other types. The
phrase command flag (PF) is a binary flag that signals the
occurrence of a phrase command at the beginning of the ac-
centual phrase.

4. THE PROSODIC DATABASE

The prosodic database is made up of 486 sentences extracted
from ATR’s continuous speech database [4] (speaker MHT).
The database has been divided into three parts: 388 sen-
tences constitute the training section, 50 sentences consti-
tute the validation section, and 48 sentences constitute the



Table 3. Mean square error of F0 contours generated by
neural network with respect to natural speech

Neural net No. of elements MSE
configuration in hidden layer
MLP 10 0.218
MLP 20 0.217
Jordan 10 0.220
Jordan 20 0.215
Elman 10 0.214
Elman 20 0.232

test section. The validation section is used in the neural
network training as a measure to avoid overtraining. The
timing parameters of the training data are obtained as sug-
gested in [5], and then an analysis-by-synthesis process us-
ing F0 contours extracted from natural speech is carried out
on the magnitudes of phrase commands and amplitudes of
accent commands.

5. PREDICTION MODULE

5.1. Prediction Module Based on a Neural Network

Neural networks provide a good solution for problems in-
volving strong non-linearity between input and output pa-
rameters, and also when the quantitative mechanism of the
mapping is not well understood.

The use of neural networks in prosodic modeling has
been reported in [6] and [7], but those methods do not make
use of a model to limit the degrees of freedom of the prob-
lem. Another difference is that they are syllable-based, and
additional care must be taken in order to account for the
continuity of F0 contours (using recurrent networks). In our
modeling, the continuity and basic shape of F0 contours are
ensured by the F0 model.

In this work, three types of neural network structures
are evaluated: the multi-layer perceptron (MLP), Jordan (a
structure having feedbacks from output elements), and El-
man (a structure having feedbacks from hidden elements).
The latter two neural network structures are called partial
recurrent networks, and are tested here in order to account
for the mutual influence of neighboring accentual phrases.
All structures have a single hidden layer containing either
10 or 20 elements.

For the experiments, we utilized the SNNS neural net-
work simulation software [8]. The results of F0 contour
prediction on the test data set are shown in Table 3. In the
table, the MSE (mean square error) value corresponds to the
average squared difference between the generated F0 con-
tour and the contour extracted from natural speech, in log
scale.

Table 4. Evaluation of F0 contours generated by regression
trees

Stop criterion MSE
10 0.218
20 0.222
30 0.210
40 0.217
50 0.220

5.2. Prediction Module Based on Binary Regression Trees

A disadvantage of neural networks is the difficult interpretabil-
ity of the resulting prediction module. In order to obtain a
basis for comparison and also to have an idea of the indi-
vidual influence of each input feature in future works, we
also solve the same F0 model parameter prediction problem
using binary trees, and carry out a comparison between the
results in terms of MSE measure. The human-interpretable
results provided by binary regression trees can also be even-
tually reflected in the design of neural networks.

For the experiments, we use the freeware Wagon [9]
from the Edinburgh Speech Tools Library. Trees are con-
structed using different values for the stop criterion, which
is the minimum number of examples per leaf node (10, 20,
30, 40, 50). Note that one regression tree is needed for each
parameter to be predicted.

The results of F0 contour prediction using tree regres-
sion are shown in Table 4. In terms of MSE measure, we
note that there is no significant difference with respect to the
results obtained with the neural network prediction module.

An example of F0 contour generated by a set of regres-
sion trees with stop criterion set to 30 is shown in Figure 1.
In the figure, the first frame shows a speech waveform corre-
sponding to the utterance, the second frame shows phoneme
labels, the third frame shows the generated F0 contour (con-
tinuous line) and the reference contour extracted from natu-
ral speech (discontinuous line), and the fourth frame shows
the predicted F0 model parameters.

6. LISTENING TESTS

We carried out listening tests using natural speech samples
with modified F0 contours. F0 contour modification was
done using an LMA filter[10]. Speech samples correspond-
ing to 9 sentences were taken, and their F0 contours were
modified by applying two different F0 contours: an F0 con-
tour generated by an Elman network containing 10 elements
in the hidden layer, and another one generated by a set of
regression trees with stop criterion set to 30. These are the
configurations that yielded the best scores in terms of MSE
distance with respect to natural speech. The 9 resulting pairs
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Fig. 1. Example result using a set of regression trees

of speech samples resynthesized with both prediction mod-
ules were presented to 9 listeners, who were asked to select
the one that sounded better. From the total of 81 speech
pairs presented, in 30 pairs the preferred F0 contour was the
one generated by the neural network, against 19 of the set of
binary trees. The listeners could not tell their preference in
the remaining 32 pairs. The results show that the listeners
could not detect a significant perceptual difference between
the two prediction modules, and the general impression was
positive for both.

7. COMMENTS

We presented a modeling and generation scheme of F0 con-
tours for Japanese TTS that uses a superpositional command-
response model and a prediction module, which can be a
neural network or a set of binary regression trees. The model
reduces the number of degrees of freedom and facilitates
data-driven learning. Compared to rule-based methods, the
approach enables easier construction of a high-quality F0
contour predictor, reducing dependence on ad-hoc rules. In
addition, compared to other statistical approaches that do
not make use of an F0 contour generation model, the en-
coded representation of F0 contours enables the utilization
of more compact prosodic databases for training. For now
on, further investigation is necessary on the contribution of
different input parameters, and also on other possible learn-
ing methods and configurations for the prediction module.

8. REFERENCES

[1] H. Fujisaki and K. Hirose, “Analysis of voice funda-
mental frequency contours for declarative sentences of
japanese,” J.Acoust.Soc.Jpn(E), vol. 5, no. 4, pp. 233–
242, 10 1984.

[2] T. Hirai, N. Iwahashi, N. Higuchi, and Y. Sagisaka,
“Automatic extraction of f0 control rules using statis-
tical analysis,” in Advances in Speech Synthesis. 1996,
pp. 333–346, Springer.

[3] O. Jokisch, H. Mixdorff, H. Krusche, and U. Kor-
don, “Learning the parameters of quantitative prosody
models,” in Proceedings of ICSLP’2000, 2000.

[4] K. Takeda, N. Sagisaka, S. Katakiri, Abe, and Kuri-
hara, Speech Database for Research - User’s Manual,
ATR, 1988.

[5] T. Hirai and Y. Higuchi, “Automatic extraction of the
fujisaki model parameters using the labels of japanese
tone and break indices (j tobi) system,” IEICE Jour-
nal D-II (Jap.), vol. J81-D-II, no. 6, pp. 1058–1064, 6
1996.

[6] C. Traber, “F0 generation with a data base of natu-
ral f0 patterns and with a neural network,” in Talking
Machines: Theories, Models, and Designs. 1992, pp.
287–304, Elsevier.

[7] S.H. Chen, S.H. Hwang, and Y.R. Wang, “An rnn-
based prosodic information synthesizer for mandarin
text-to-speech,” IEEE Trans. on Speech and Audio
Processing, vol. 6, no. 3, pp. 226–239, 5 1998.

[8] University of Stuttgart, Stuttgart Neural Network Sim-
ulator - User Manual - Version 4.1 - Report no. 6/95.

[9] P. Taylor and A. Black, Edinburgh Speech
Tools Library - Wagon, Edinburgh University,
http://www.shlrc.mq.edu.au/festival/, 1999.

[10] S. Imai, “Low bit rate cepstral vocoder using the
log magnitude approximation filter,” in Proc. of
ICASSP’78, 4 1978, pp. 441–444.


