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ABSTRACT

Information of phone relationships is regarded as acting an
important role in speech recognition. It has been success-
fully exploited in many speaker adaptation approaches. In
this paper, we propose a new approach, named Phone Pair
Model (PPM) re-scoring, to utilize phone relationships for
speaker-adaptive speech recognition. PPM re-scoring ap-
proach does not really adapt model parameters to a new
speaker. It just uses some pre-registered phones' samples
from the speaker being recognized, to re-calculate the like-
lihood of phones that has been calculated on conventional
phone HMMs, resulting in a more correct recognition re-
sult. Additionally, it can deal with not only inter-speaker
acoustic variations but also intra-speaker acoustic varia-
tions adequately. Results of two recognition experiments,
one using phone HMMs only and the other incorporating
phone HMMs with the PPMs, showed that even by using
only a few vowel samples as the pre-registered phones, PP-
M re-scoring approach brought an increase in recognition
rate .

1. INTRODUCTION

Because of the importance of speaker adaptation in speech
recognition, its techniques have been broadly studied.
However, most of them su�er from insu�cient adaptation
data. In view of human's ability of accurately recogniz-
ing speech in spite of large distributions of acoustic fea-
tures of each individual phone, information of phone rela-
tionship should play an important role in speech recogni-
tion. Extended Maximum a posteriori estimation[1] and
Regression-based Model Prediction[2] gave some sugges-
tions in utilizing phone relationships. Since the former
deals with all the phones simultaneously, the complicated
implementation limits its practical applications. The lat-
ter approach requires that the parameters of well adapted
phones should highly correlate with those of poorly adapt-
ed ones and linear relationships must exist between them.
These conditions are often not easy to meet in actual cases.
To make use of information of phone relationships easily
in speech recognition, we propose a new approach, called
Phone Pair Model (PPM) re-scoring. As described in Sec-
tion 2, PPM is proposed to describe the relationship be-
tween two phones in a statistical fashion. In Section 3, by
applying PPM to speech recognition, we investigate the
properties of PPM and give some suggestions on its im-
plementation and improvement. Section 4 concludes the
paper.

2. PHONE PAIR MODEL

When we have some phones already known in the decoding
stage, we can determine input unknown phones based on
the probabilities calculated on the known-unknown phone
pairs. For example, if the whole phone set is fP1; � � � ; PMg,
x = x1; x2; � � � ; xTx and y = y

1
; y

2
; � � � ; yTy are two obser-

vation sequences generated from a known phone Px's mod-
el �Px and an unknown phone Py 's model �Py respectively,
we can calculate the conditional probability on each phone
model pair (�Px ; �Pi), where i 2 f1; � � � ;Mg. If model
pair (�Px ; �Pk ) gives the highest probability, then �Pk is
considered having generated y, i.e. Py = Pk.

^�Py = argmax
�P

i

p(yjx; �Px ; �Pi)

= argmax
�Pi

p(x; yj�Px ; �Pi)

p(x)

i = 1; � � � ;M (1)

Since p(x) is invariant to i, we have

^�Py = argmax
�Pi

p(x; yj�Px ; �Pi): (2)

It is too complicated to calculate the joint probability
p(x; y) when x; y are two observation sequences. In a con-
ventional HMM-based recognizer, each phone is modeled
as an HMM. By forced-aligning each observation sequence
into states of its corresponding HMM, the joint probability
p(x; y) can be approximated by

p(x; y) �
Y
i;j

p(xi; yj) (3)

where xi is the average of vectors aligned to state i of
the HMM of Px, and yj is the average of vectors aligned
to state j of the HMM of Py .
To calculate the joint probability of xi and yj , we �rst

concatenate the two vectors to create a joint vector (xi; yj),
then assume that it is a random vector normally distribut-
ed around its mean value

� =

�
�xi
�yj

�

with covariance matrix

� =

�
�xi:xi �xi:yj

�yj:xi �yj:yj

�
: (4)



The estimation of � and � will be introduced in Section 3.4.

When the four sub-matrices of � are assumed diagonal,
�xj:yi is equal to �yj:xi. With this assumption, the com-
putation load of calculating joint probability of two vectors
will be largely reduced. See Section 3.2.2.

3. APPLYING PPM TO SPEECH

RECOGNITION

3.1. Integrating PPM with Phone HMM

We use HVite of HTK(Ver.2.1.1)[3] as the baseline recog-
nizer. In HTK, each word is represented as a sequence
of phone HMMs (see the recognition network in Figure 1.
The square boxes represent word-end nodes, and the circles
denote HMMs of the phones that constitute the words).
Each HMM has 3 states with self-transitions, one initial
state and one �nal state, totally 5 states.

For simplicity, the current approach only exploits the
information of state 3.
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Fig. 1. Recognition process using PPMs

Before recognition, adaptation observations of an utter-
ance from the speaker to be recognized are aligned in-
to states of the corresponding HMMs. Then the phones
which we are interested in (here are the �ve Japanese vow-
els fa; i; u; e; og ) can be extracted. Although the detected
phone boundaries may include errors, they are accurate
enough for our purpose. Then we average the vectors in
state 3 of each HMM and get 5 vectors fva; vi; vu; ve; vog
for the 5 vowels. The 5 vectors are registered for decoding
stage.

During the recognition process, when a token (refer to
[4]) reaches a word-end node, boundaries of the phones that
constitute the current hypothesized word are known. For
each phone Py of the word, we can make up 5 vector pairs

(vk; oy)(k 2 fa; i; u; e; og and oy is the average of vectors
aligned to state 3 of the HMM of phone Py) based on
the boundary information. By calculating the probability
density of (vk; oy) generated by the corresponding PPM
�k�y respectively, we get a PPM score p

pair

Py
, which is the

average of the 5 scores, for phone Py.

Since each word consists of a di�erent number of phones,
we average the PPM scores over the phones that constitute
the word, to assure that PPM contributes to every word
equally. Since PPM score of a word is added to the score of
a partial path one time when the word is added to the path,
and PPM score is usually less than 0, PPM decreases the
score of a longer hypothesized sentence more largely than
that of a shorter one, thus involving errors in recognition
results. A positive constant is used to alleviate this e�ect,
named PPM compensation. Additionally, PPM scale is
used to weight PPM score. If the logarithmic likelihood
of the partial path up to the current word is  (which is
calculated in conventional way), we add the logarithmic
PPM score to  and get the modi�ed score  mod as

 
mod

=  + k(
1

N

NX
n=1

p
pair

Pn
+ pcomp) (5)

where k is PPM scale, pcomp is PPM compensation and
N is the number of phones that constitute the word. De-
tailed explanations are schematically shown in Figure 1.

3.2. Issues in Implementation

A recognition task is designed to test PPM. An utterance
from the new speaker to be recognized is necessary for
adaptation. Two types of recognition experiments are con-
ducted for comparison: one using HVite only and the other
incorporating PPM into HVite.

3.2.1. PPM Score

Since we are aiming at distinguishing the correct word
hypothesis from the others, only the partial score, which
causes di�erence in likelihood scores between words, is ex-
ploited in calculating the PPM score of a particular obser-
vation o

p
pair

(o) = �0:5 � (logj�j+ (o� �)
0

�
�1
(o� �)): (6)

where � and � are the covariance matrix and mean vector
of the corresponding PPM respectively.

3.2.2. Computational Load

In Equation (6), the determinant and the inverse ma-
trix of � need to be calculated. When the input vector
is D-dimensional, � is a 2D � 2D square matrix, a heavy
computational load is imposed on the recognizer. This
computational problem can be solved by assuming all the
4 sub-matrices of � being diagonal (refer to Equation (4)).



When � is represented as

0
BBBBBBBBBB@

a11 0 � � � 0 b11 0 � � � 0
0 a22 � � � 0 0 b22 � � � 0

...
...

0 0 � � �aDD 0 0 � � �bDD
b11 0 � � � 0 c11 0 � � � 0
0 b22 � � � 0 0 c22 � � � 0

...
...

0 0 � � � bDD 0 0 � � �cDD

1
CCCCCCCCCCA
; (7)

then ��1 is

0
BBBBBBBBBB@

A11 0 � � � 0 B11 0 � � � 0
0 A22 � � � 0 0 B22 � � � 0

...
...

0 0 � � �ADD 0 0 � � �BDD

B11 0 � � � 0 C11 0 � � � 0
0 B22 � � � 0 0 C22 � � � 0

...
...

0 0 � � �BDD 0 0 � � �CDD

1
CCCCCCCCCCA
; (8)

where

Aii =
cii

aiicii � b2ii
; Bii =

�bii
aiicii � b2ii

;

Cii =
aii

aiicii � b2ii
; i 2 f1; � � � ; Dg:

The determinant is given by

j�j =

DY
i=1

(aiicii � b
2

ii): (9)

3.3. Training HMMs

ASJ (Acoustic Society of Japan) Continuous Speech Cor-

pus for Research is used as the training and test data. 150
utterances from each of 6 male speakers, totally 900 ut-
terances are used to train speaker-independent (SI) mono-
phone HMMs (called SI-6 models for later references). 3
other speakers are used as test speakers. Their speaker-
dependent (SD) HMMs are also trained for comparison.

3.4. Training Phone Pair Models

The same data as we used in training SI HMMs is used to
train PPMs, through the following steps:

1. Align the training data to states of SI phone HMMs.

2. Average the vectors aligned to state 3 of the SI phone
HMMs.

3. Select samples of phone pair to estimate the mean
vector � and covariance matrix � of the corresponding
phone pair model. Figure 2 illustrates this process for
a given utterance "aka da" (meaning "It is red").

As depicted in Figure 2, 10 phone pair samples can
be obtained. Here, to catch the intra-speaker acoustic
variations, two phone samples are chosen to make up a
phone pair sample only when they appear in the same
utterance.

a k a d a

Fig. 2. Selecting phone pair samples for training PPM

3.5. Preparing Adaptation Data

Given an adaptation utterance and its transcription, by
performing forced-alignment with SI HMMs, the average
vectors of state 3 of the HMMs of the 5 vowels fa; i; u; e; og
can be extracted. They are registered for the following
decoding stage.

3.6. Test Conditions and Results

The parameter vector is 38-dimensional for both HMMs
and PPMs, containing 12th order MFCCs, �MFCCs,
��MFCCs, � power, ��power. The dictionary consists
of 886 words. 50 utterances from each of the 3 test speakers
are tested.

The results are shown in Figure 3 and Figure 4, where
SI, SD mean recognizing with SI models and SD models,
respectively. The other curves show the results using SI H-
MMs incorporated with PPMs, with di�erent PPM scales
and PPM compensations.

Fig. 3. Word correct rate using SI-6 HMMs incorporated
with PPMs

Fig. 4. Word accuracy using SI-6 HMMs incorporated
with PPMs

The �gures show that PPM re-scoring generally results
in an obvious increase in both word correct rate and word
accuracy across a wide range of PPM compensation.



3.7. Further Investigations on PPM

We still have to address 2 problems

1. How does the e�ect of PPM vary when the perfor-
mance of SI models is improved?

2. How do we set PPM scale and PPM compensation to
appropriate values?

In order to solve these problems, further experiments are
conducted using the SI mono-phone HMMs provided by
Information-technology Promotion Agency, Japan (called
IPA-SI models in contrast to SI-6 models, with 16 mix-
ture components in each state of HMM, trained with the
ASJ Continuous Speech Corpus for Research and Japanese

newspaper article sentences, totally 20k sentences uttered
by 132 speakers. The parameter vector is 25-dimensional
containing 12th order MFCCs, �MFCCs and � power)
under the same conditions except that the dictionary is
extended from 886 words to 2947 words.

The results are shown in Figure 5 and Figure 6.

Fig. 5. Word correct rate using IPA-SI HMMs incorporat-
ed with PPMs

Fig. 6. Word accuracy using IPA-SI HMMs incorporated
with PPMs

In the above experiments, even though the baseline SI
models are rather well trained, PPM re-scoring still in-
creases word correct rate and word accuracy. However, the
PPM active ranges (where PPM re-scoring outperforms the
baseline recognizer) become narrower. The relative relia-
bility of PPMs and HMMs (high reliability when trained

well) is considered as one main factor that in
uences PPM
active range, PPM scale as well as the obtained improve-
ment. When the PPMs are well-trained, a larger PPM

scale may be preferable.
The results also suggest us that the optimum PPM com-

pensation varies with SI HMMs. The vector size of model
parameters is considered as another factor. It may be set
properly by a few tests preceding the recognition.

4. CONCLUSION

A new approach, PPM re-scoring, was proposed to utilize
phone relationships for speaker-adaptive speech recogni-
tion. It has the following main properties

1. Since it does not really adapt model parameters to a
new speaker, its "adaptation" stage is very simple.

2. By modeling phone relationship of each phone pair
separately, some particular phone pairs that involve
errors in the recognition results (e.g. consonant-
consonant pairs) can be removed. The re-scoring com-
putational load may also be reduced largely.

3. Since only the phones appearing in the same utterance
are selected to make up a phone pair sample in train-
ing PPMs, PPMs can also catch intra-speaker varia-
tions.

We incorporated PPM with phone HMM and tested it
on a speaker-independent recognition task. A remarkable
increase of recognition rate was achieved, even given only
a few vowel samples of the new speaker.
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