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ABSTRACT

An intonation modeling scheme for Japanese text-to-speech
synthesis is proposed using a command response Fy model and
a neural network to generate Fy contours of accentual phrases
uttered in continuous speech. The neural network is used to
predict the values of Fy model parameters for a whole sentence,
focusing on accentual phrases. The features used as inputs to
the neural network are: position of the accentual phrase within
the sentence, number of morae in the accentual phrase, accent
type of the accentual phrase, number of words in the accentual
phrase, and parts-of-speech of the first and last words of the
accentual phrase. The predicted parameters are: a flag that
indicates the presence of a phrase command at the beginning of
the accentual phrase, magnitude of the phrase command (if
present), amplitude of the accent command, and offset values
for the timing of phrase and accent commands. All features are
simultaneously predicted. Three types of neural network
structures are used, each one with 3 different numbers of
elements in the single hidden layer: MLP (multi-layer
perceptron), Elman, and Jordan. The method permits efficient
prediction of Fy model parameters, as observed in evaluation
experiments and informal listening tests.

1. INTRODUCTION

One of the most difficult problems in text-to-speech (TTS)
synthesis is the correct control of prosodic features, especially
Fy contour and duration.

Fy contours can be generated using superpositional models,
which provide accurate approximation of Fp contours when
parameter values are correctly assigned. A representative
superpositional model for Japanese F, contours has been
proposed in [1] as a command-response model (Fy Model for
now on). The model represents Fy contours in logarithmic scale
as the superposition of phrase and accent components, which
are associated to different levels in the prosodic structure. This
model is used in the present framework as a straightforward
way to represent prosodic features in speech databases, as
proposed in [2].

However, automatic assignment of Fp model parameters in real
TTS systems is a difficult task due to the complex non-linear
dependence on an array of linguistic features. As a consequence,
most practical TTS systems have dealt with the problem in a
suboptimal way by including a hand-tuned, knowledge-based

expert system in charge of predicting Fy model parameters from
text.

It is, though, currently impossible to design an expert system
that perfectly mimics a human's intricate /, contour generation
process. In view of that, considerable research effort has been
devoted to the use of statistical techniques to replace human
expertise. This is basically the philosophy behind data-driven
approaches to intonation modeling. One such attempt is
reported in [3]. The method is based on MSR (multiple-split
regression) trees, a variation of binary regression tree that
encompasses both binary split regression and multivariate
linear regression. The method permits the prediction of phrase
command magnitudes (4,) and accent command amplitudes
(4,) when all timing parameters are externally assigned,
making use of a measure of deepness of prosodic boundaries.

In this work, we propose a method based on neural networks
that yields all Fp model parameters necessary for the calculation
of the Fy contour, including timing parameter values. The text
must be previously split into accentual phrases and undergo
morphological analysis, as commonly done by most current TTS
systems.

The use of neural networks in prosodic modeling has been
reported in [4] (Mandarin) and [5] (German), but they do not
make use of a superpositional model. Our idea is that a
superpositional model is a good way to reduce degrees of
freedom of the system.

Three types of neural network configurations are tested: Elman
(a partial recurrent network with feedbacks from hidden units),
Jordan (a partial recurrent network with feedbacks from output
units), and multi-layer perceptrons (MLP). The following
sections describe the method in detail and show the results of
evaluation experiments.

2. NEURAL NETWORK MODELING OF
F,MODEL PARAMETERS

2.1. Network Configuration

The ideal configuration, number of layers, and number of units
per layer for a given problem cannot in general be easily pre-
established, and often a great deal of heuristics is required to
obtain the network configuration [6]. For the present problem,
based on previous research, we use two types of partial
recurrent networks, commonly known as Elman and Jordan



networks, and also the well-known multi-layer perceptron

(MLP) (Figure 1).
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Figure 1: Neural network structures used in /y model
parameter prediction experiments: (a) Elman network, (b)
Jordan network, and (c) multi-layer perceptron (MLP).

2.2.

The neural network takes as inputs various types of linguistic
information that can be directly extracted from text. In a rule-
based system, typical features that are used to determine the
values of Fy model parameters are: the position of accentual
phrases within the utterance, number of morae, duration, parts-
of-speech, time (or number of morae) elapsed since the last
phrase command, time (or number of morae) until the end of
the sentence, etc. [3.,7]. For the present neural network
modeling, the features used as inputs to the neural network are
listed in Table 1, and the output features are shown in Table 2.
The part-of-speech (POS) classification is based on the ATR
Continuous Speech Database [8], and the phrase command flag
in Table 2 is a binary flag that signals the presence of a phrase
command before the accentual phrase in question.

Input and Output Features

Output Feature Type

Phrase command magnitude (4,), if exists Continuous
value

Accent command amplitude (4,) Continuous
value

Phrase command offset (#5¢) , if exists Continuous
value

Offset of accent command onset (¢; op) Continuous
value

Offset of accent command reset (22 .4) Continuous
value
Phrase command flag Binary

Input Feature Number of
classes
Position of accentual phrase within utterance 18
No. of morae in accentual phrase 15
Accent type of accentual phrase 9
No. of words in accentual phrase 8
POS of first word in accentual phrase 37
Conjugation type of first word in accentual phrase 7
Conjugation category of first word in accentual 7
phrase
POS of last word in accentual phrase 37
Conjugation type of last word in accentual phrase 7
Conjugation category of last word in accentual 7
phrase

Table 1: Neural network input features

Table 2: Neural network output features

It is worth noting that partial recurrent networks (Jordan and
Elman structures) have feedback loops that can model
contextual effects such as the dependence of a phrase command
on the time (or number of morae) elapsed since the last phrase
command, or the interaction between amplitudes of neighboring
accent commands, and should theoretically perform better than
MLPs. The experiments will show that to some extent, this
supposition is true.

3. EVALUATION EXPERIMENTS

3.1. Trainingon a Prosodic Database

The prosodic database used for training and testing has been
designed as proposed in [2]. It is derived from the ATR
Continuous Speech Database (speaker MHT) and contains
values of Fy Model parameters which have been automatically
calculated using the method proposed in [9] and then slightly
hand-corrected.

The database is divided into three sections, respectively used
for training, validation, and testing. The training section
contains 2803 accentual phrases distributed across 388
sentences, the validation section contains 317 accentual phrases
distributed across 50 sentences, and the testing section contains
48 sentences containing 262 accentual phrases. The data
effectively used for training comes from the training section.
The validation section data are used during the training to
provide an independent error measure that indicates when to
stop training. All evaluation tests are carried out using the test
data section.

Training is carried out using a special backpropagation method
for partial recurrent neural networks, and standard
backpropagation for MLP. SNNS version 4.1 [10] is used for
neural network design and simulation.




3.2. Predicting the Existence of Phrase
Commands and Their Parameter
Values

Although the existence of phrase commands is signaled by a
binary flag, the output of the neural network is a continuous
value. For this reason, a threshold is necessary to obtain the
phrase flag from the neural network output. The threshold is
automatically obtained by increasing its value in steps of +0.01,
starting from 0.0, and monitoring the number of insertions and
deletions thus obtained. The threshold that approximately
balances the number of insertions and deletions is selected.

Table 3 summarizes the results of phrase command prediction
obtained with different network configurations. Note that the
test data set contains 262 accentual phrases, out of which 111
are accompanied by a phrase command.

Here, the MSE error is calculated according to equation (1),
where p is the nominal value of the parameter and p’ is the
predicted value:
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3.3 Predicting Accent Command
Parameters

Accent command parameters are also predicted by the neural
network. Table 5 gives the MSE for the accent command
amplitude 4,, and the offset times for the accent command
onset (#7 op) and reset (2 o). The MSE is also calculated using
Equation (1).

Neural | Number of| MSE for | MSE for | MSE for
network | elements Aa trofr 6 ofr
type | inhidden | (x10%) | (x10°5%) | (x 107s%)
layer
MLP 10 29 4.5 4.8
MLP 20 27 5.0 5.3
MLP 50 28 4.9 4.7
Jordan 10 28 4.7 5.1
Jordan 20 25 4.5 4.7
Jordan 50 28 42 5.1
Elman 10 28 4.8 4.7
Elman 20 28 4.7 4.8
Elman 50 28 4.4 4.6

Neural | Number | Detected | Deletion | Insertion | Dt/In
network of (Dt) DI (In)
type | elements
in hidden
layer
MLP 10 83 28 36 2.31
MLP 20 81 30 40 2.03
MLP 50 80 31 34 2.35
Jordan 10 81 30 37 2.19
Jordan 20 79 32 38 2.08
Jordan 50 81 30 36 2.25
Elman 10 81 30 37 2.19
Elman 20 82 29 37 222
Elman 50 78 33 37 2.11

Table 3: Phrase command prediction results.

The neural network also predicts the values of the phrase
command magnitude A, and the phrase command offset 7 o4,
i.e., the time from the phrase command onset #p until the
beginning of the accentual phrase at the phonetic level. Table 4
gives the mean-square error for these values with respect to
nominal values contained in the database, calculated only over
accentual phrases where phrase commands effectively exist.

Neural | Number of| MSE for 4, MSE for #5 .4
network | elements (x 107 (x107°¢%
type in hidden
layer

MLP 10 30 33

MLP 20 30 32

MLP 50 30 33
Jordan 10 31 34
Jordan 20 30 32
Jordan 50 31 33
Elman 10 31 32
Elman 20 29 32
Elman 50 29 33

Table 4: Results of phrase command parameter prediction

Table 5: Results of accent command parameter prediction

3.4 Comparison with F, Contours
Extracted from Natural Speech

In order to evaluate the overall prediction results of Fy Model
parameters, we obtained the complete set of Fy Model
parameters for the 48 sentences of the test set and compared the
Fy contours produced by those parameters with the Fy contour
extracted from natural speech for each neural network structure.

The results are given in Table 6. Note that timing parameters
were calculated based on the offsets predicted by the neural
network applied to reference points found in the natural
speech at the phonetic level. These reference points are:
beginning of the accentual phrase (for phrase commands and
onsets of accent commands associated to accentual phrases of
type 1), beginning of the second mora (for onsets of accent
commands associated to accentual phrases of other accent
types), end of the mora containing the accent nucleus (for resets
of accent commands associated to accentual phrases that
contain an accent nucleus), and end of the accentual phrase (for
resets of accent commands associated to accentual phrases that
do not contain an accent nucleus - type 0). The phrase command
reset is always placed at the end of the sentence, and the values
of the natural angular frequencies of the phrase and accent
control mechanisms (o and ) are respectively fixed to 3.0 and
15.0. The minimum square error between the predicted Fj



contour and the extracted Fy contour is calculated using
Equation (2), where Fj is the value extracted from the natural
speech, and Fj’ is the predicted value.

1 .
MSE =3 llog(F ) ~log(F)F ()

3.5 Informal Listening Tests

In order to further evaluate the results obtained with the method,
we applied the F contours generated in the previous item to
natural speech samples of the database, using an LMA filter
[11]. The generated speech samples show a high level of
naturalness, which encourages the implementation of the
present method in an actual TTS system.

Neural Number of Fy Contour MSE

network | elements in hidden (log(Hz))*
type layer
MLP 10 0.219
MLP 20 0.224
MLP 50 0.225
Jordan 10 0.214
Jordan 20 0.213
Jordan 50 0.226
Elman 10 0.214
Elman 20 0.211
Elman 50 0.232

Table 6: Fy Model parameter prediction error (MSE)

4. CONCLUSION

We presented an intonation modeling and prediction scheme for
Japanese text-to-speech synthesis that predicts the values of F
Model parameters using a neural network, and the results show
the validity of the method. It was shown that the neural network
structures selected in the present experiments are able to
predict the whole set of ) model parameters, including timing-
related values, but the small number of neural network types
tested are not sufficient to determine the optimal neural
network structure. For now on, other neural network structures
should be investigated, and also the effect of scarce training
data. In addition, the method should be connected to a TTS
system and listening tests must be realized in order to compare
it with traditional rule-based systems.
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