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Title of each lecture
• Theme-1 

• Multimedia information and humans 
• Multimedia information and interaction between humans and machines 
• Multimedia information used in expressive and emotional processing 
• A wonder of sensation - synesthesia - 

• Theme-2 
• Speech communication technology - articulatory & acoustic phonetics - 
• Speech communication technology - speech analysis - 
• Speech communication technology - speech recognition - 
• Speech communication technology - speech synthesis - 

• Theme-3 
• A new framework for “human-like” speech machines #1 
• A new framework for “human-like” speech machines #2 
• A new framework for “human-like” speech machines #3 
• A new framework for “human-like” speech machines #4
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Aim of this class
• Syllabus on the web 

• Cognitive processing of multimedia information by humans and its technical 
processing by machines are explained and compared. Then, a focus is placed on 
the fact that a large difference still remains between them. This lecture will enable 
students to consider deeply what kind of information processing is lacking on 
machines and has to be implemented on them if students want to create not 
seemingly but actually “human-like” robots, especially the robots that can 
understand spoken language. 

• The lectures are divided into three parts. The first part explains the multimedia 
information processing by human brains. Here, some interesting perceptual 
characteristics of individuals with autism(自閉症) and synesthesia(共感覚) are shown as 
examples. The second part describes the conventional technical framework of 
spoken language processing. The last discusses drawback of the current 
framework and what kind of new methodology is needed to create really “human-
like” robots that can understand spoken language. Then, a new framework is 
introduced and explained.
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Human media information processing
• Unconscious processing 

• Blind spot, blind sight, color illusion, size illusion, etc
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Human media information processing
• Unconscious processing 

• Visual sensation described by a medical doctor with brain damage 
• Paying attention only to some specific objects 
• Some interesting behaviors of autistics (detailed memorization and rote learning?)
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Sensation by autistics
• What are autistics good at and poor at? 

• Good at 
• remembering very detailed aspects of stimuli. 

• Especially their visual memory is often extraordinary. 

• processing constantly repeated patterns. 

• concentrating a (given) specific task. 

• Poor at 
• dealing with something abstract or invisible. 
• capturing the relations of things although good at capturing a specific one thing. 

• Good at capturing an element but poor at capturing them as a whole. 

• dealing with temporal development including future planning 

• understanding the environments properly. 
• Hidden messages are difficult to detect, ex. facial expressions, metaphors, etc. 

• understanding spoken language. 
• In cases of severely damaged autistics, their first language is written language. 

• smooth communication with others. 
• dealing properly with sensory stimuli. 

• Their sensitivity of sensory stimuli is too good. Can hear the sounds that non-autistics cannot hear. 
• Difficult to select important stimuli / difficult to ignore irrelevant stimuli.
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Human media information processing
• Unconscious processing 

• Mixed media processing 
• “I can see through my tongue.” 
• Mixed sensation of synesthesia 

• Organizing principle for cerebral function (V. Mountcastle, 1978) 
• The unit of the cerebral cortex, called “column”, has a very similar anatomical structure. 

• It implies that a universal information algorithm (common framework) exists in the cortex.
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Acoustic phonetics
• Spectrum of a vowel sound

Resonance = concentration of the energy on specific bands that are 
determined only by the shape of a tube used for sound generation.

Timbre = energy distribution pattern over the frequency axis
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Waveform to spectrum
• From waveforms to spectrums 

• Windowing + FFT + log-amplitude 

• Insensitivity of human ears on phase characteristics of speech 
• Human ears are basically “deaf” to phase differences in speech. 
• It is not impossible for us to discriminate acoustically two sounds with different 

phase characteristics but we don’t discriminate them linguistically. 
• No languages have those two sounds as two different phonemes.
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Acoustic phonetics
• Other vowels = standing waves generated through a complicated tube
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Acoustic and articulatory phonetics
• Shape difference = resonance frequency difference 

• /a/ and /i/           /a/ and /a/
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Waveforms --> spectrums --> sequence of feature vectors
音響モデル --- HMM ---(#1)

❐音響モデリングの単位
✔ 単語を単位とすると単位数が爆発 ➛音素，音節を単位に

❐音響特徴パラメータ
✔ /あ/い/う/え/お/　の音響的差異はどこに観測されるのか？ ➛音声のスペクトル包絡
✔ スペクトル包絡の情報をどう符号化するのか？ ➛ケプストラム
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音声の生成モデルとしての

CLOSURE BURST RELEASE VOWEL

確率的生成モデル
状態間の境界 遷移確率 状態毎の出力信号 出力確率

HMM as generative model

Probabilistic generative model
State transition is modeled as transition probability. 
Output features are modeled as output probability.
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パラメーター

遷移

状態

状態から状態へ遷移する確率 遷移確率
状態からベクトルを出力する確率 出力確率

前向き確率

後向き確率

transition

state

Transition prob. : 

Output prob. : 
Forward prob.

Parameters of HMM

アルゴリズムによるパラメータの推定

前向確率

後向確率

→

→

→ ベクトル と状態 との「結び付き」の度合い

→

アルゴリズムによるパラメータの推定

前向確率

後向確率

→

→

→ ベクトル と状態 との「結び付き」の度合い

→

Backward prob.
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Speech recognition using a network grammar

word HMM word HMMgrammatical 
state

grammatical 
state

When a grammatical state has more than one preceding words, 
the word of the maximum probability (or words with higher 
probabilities) is adopted and it will be connected to the following 
candidate words. 
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Spectrum generated from HMMs
• Text -> HMM seq. -> most likely state seq. -> most likely spectrum seq. 

• The most likely spectrum from a state = mean vector (spectrum) of the state 
--> the spectrum sequence has to have stepwise abrupt changes.

2.3 音声の合成とそのモデル 63

図 2.28 動的特徴を考慮したスペクトル包絡の生成（上：動的特徴な
し，下：あり）（出典：1999 - 2011 Nagoya Institute of Technology）

である。vqt と Uqt は状態 qt の平均ベクトルと分散共分散行列である。最尤特
徴量系列は式 (2.81)を最大化する C として得られる。これは式 (2.81)に対す
る C の偏微分項を 0とおいた方程式によって求められる。

∂P (O|ŝ,m, d)
∂C

=
∂P (KC|ŝ, m, d)

∂C
= 0 (2.84)

図 2.28 に動的特徴を考慮せずに生成されたスペクトル包絡と，考慮して生
成されたそれとを示す。後者がより滑らかな音声パターンを生成している。

( 3 ) HMM 音声合成における特徴量の設計 最尤のスペクトル包絡系
列が得られても音声波形にはならない。適切な音源波形でこれらを駆動する必
要がある。有声区間は（各時刻の基本周期に対応した）インパルス列が，無声
区間は白色雑音が音源波形となるが，イントネーションや単語アクセントに応
じて基本周期を適切に制御し，所望の F0 パターンを描くような音源波形とす
る必要がある。すなわち，入力テキストにふさわしい F0パターンを推定し，そ
れに応じた音源を生成する必要がある。HMM音声合成では，特徴量ベクトル
ot に F0 を加えることで，F0 パターン生成も HMMを用いて行う。

ot = [ct
T,∆ct

T, ∆2ct
T, ft, ∆ft,∆

2ft]
T

(2.85)
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GMM-HMM to DNN-HMM
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• How to obtain the HMM state for each frame in the training data? 
• DNN-HMM trains GMM-HMM internally at first. 

• (Forced) alignment between GMM-HMM and training data is done. 
• Then, the state for each frame is fixed and labeled.
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A new framework for “human-like” 
speech machines #1

Nobuaki Minematsu



Information that speech can transmit

Three kinds of information 
Linguistic 

Para-linguistic 

Extra-linguistic (non-linguistic) 

Speech 
Waveforms, just a sequence of numbers 

-23, -89, -127, -40, 9, 46, 189, 242, 212, 183, .... 

Two major speech applications 
Speech recognition 

Extraction of linguistic info. from a number sequence 

Large extra-linguistic variation in speech acoustics is a major problem. 

Speech synthesis 
Conversion of linguistic info. +    to a number sequence

“Here you are.”



Speech is extremely variable.

Various factors change speech acoustics easily. 

The world’s tiniest high school girl



De facto standard acoustic analysis of speech

Feature separation to find specific info.

speech
waveforms

phase
characteristics

amplitude
characteristics

source
characteristics

filter
characteristics

Insensitivity to 
phase differences
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Spectrum envelope-based feature such as CEP:  
But    depends on all the three kinds of info. (ling, para-ling, extra-ling). 

How to suppress extra-linguistic variation in    ? 
Feature normalization: transforming    to that of the standard speaker 

Model adaptation: modifying model parameters to fit to the input speaker 

Statistical independence: hiding these variation through sample collection 

Physical independence: pursuing features invariant to these variation 

   :

Insensitivity to 
pitch differences
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Insensitivity to 
pitch differences

Two acoustic models for speech/speaker recognition 
Speaker-independent acoustic model for word recognition 

   

Text-independent acoustic model for speaker recognition 
  

Require intensive collection 
                    is possible or not?
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Spectrum envelope-based feature such as CEP:  
But    depends on all the three kinds of info. (ling, para-ling, extra-ling). 

How to suppress extra-linguistic variation in    ? 
Feature normalization: transforming    to that of the standard speaker 

Model adaptation: modifying model parameters to fit to the input speaker 

Statistical independence: hiding these variation through sample collection 

Physical independence: pursuing features invariant to these variation 
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pitch differences

o
os

ow



?

Machine strategy (engineers’ strategy): ASR 
Collecting a huge amount of speaker-balanced data 

Statistical training of acoustic models of individual phonemes (allophones) 

Adaptation of the models to new environments and speakers 
Acoustic mismatch bet. training and testing conditions must be reduced. 

Human strategy: HSR 
A major part of the utterances an infant hears are from its parents. 

The utterances one can hear are extremely speaker-biased. 

Infants don’t care about the mismatch in lang. acquisition. 
Their vocal imitation is not acoustic, it is not impersonation!!

A difference bet. machines and humans



What is the common denominator?

Deep neural network [Hinton+’06, ’12]  
Deeply stacked artificial neural networks 

Results in a huge number of weights 

Unsupervised pre-training and supervised fine-tuning 

Findings in DNN-based ASR [Mohamed+’12] 
First several layers seem to work as extractor of invariant features. 

More abstract features with extra-linguistic information removed? 

Still difficult to interpret structure and weights of DNN physically. 
Interpretable DNNs are becoming one of the hot topics [Sim’15]. 

Simple questions raised by researchers 
“What are really speaker-independent features?” [Morgan’12, ’13] 

“What is the common denominator bet. speakers?” [Jakobson’79]



A claim found in classical linguistics

Theory of relational invariance [Jakobson+’79] 
Also known as theory of distinctive features 

Proposed by R. Jakobson

We have to put aside the accidental properties of 
individual sounds and substitute a general expression 
that is the common denominator of these variables.

Physiologically identical sounds may possess different 
values in conformity with the whole sound system, i.e. 
in their relations to the other sounds.

� = ?
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Collecting a huge amount of speaker-balanced data 
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Human strategy: HSR 
A major part of the utterances an infant hears are from its parents. 

The utterances one can hear are extremely speaker-biased. 

Infants don’t care about the mismatch in lang. acquisition. 
Their vocal imitation is not acoustic, it is not impersonation!!
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Spectrum envelope-based feature such as CEP:  
But    depends on all the three kinds of info. (ling, para-ling, extra-ling). 

How to suppress extra-linguistic variation in    ? 
Feature normalization: transforming    to that of the standard speaker 

Model adaptation: modifying model parameters to fit to the input speaker 

Statistical independence: hiding these variation through sample collection 

Physical independence: pursuing features invariant to these variation 

   :

Insensitivity to 
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Vocal learning (including vocal imitation) 
A imitate(s) B vocally. 

A: students and B: teachers 

A: infants and B: parents (caretakers) 

A: you and B: professional singer (Karaoke) 

But A do not impersonate B. 

Acoustically mismatched imitation. 

We’re very insensitive to speaker identity transmitted via speech. 

Acoustically matched imitation is found in 
Autistics (自閉症), who have language disorder [Grandin’96] 

Animals’ vocal imitation (birds, dolphins, whales, etc) [Okanoya’08]

Insensitivity in our language learning



Insensitivity and sensitivity

Infants’ vocal learning is 
insensitive to age and gender differences. (A) 

sensitive to accent differences. (B) 

Infants’ vocal learning seems to be 
insensitive to feature instances and sensitive 
to feature relations. 

(A) = instances and (B) = relations. 

Relations, i.e., shape of distribution can be 
represented geometrically as distance matrix.
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Triangle 

N-point general geometrical structure

Definition of the shape of a thing
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Insensitivity and sensitivity

Infants’ vocal learning is 
insensitive to age and gender differences. (A) 

sensitive to accent differences. (B) 

Infants’ vocal learning seems to be 
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Relations, i.e., shape of distribution can be 
represented geometrically as distance matrix.
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A claim found in classical linguistics

Theory of relational invariance [Jakobson+’79] 
Also known as theory of distinctive features 

Proposed by R. Jakobson

We have to put aside the accidental properties of 
individual sounds and substitute a general expression 
that is the common denominator of these variables.

Physiologically identical sounds may possess different 
values in conformity with the whole sound system, i.e. 
in their relations to the other sounds.

� = ?



Menu of the last four lectures

Robust processing of easily changeable stimuli 
Robust processing of general sensory stimuli 

Any difference in the processing between humans and animals? 

Human development of spoken language 
Infants’ vocal imitation of their parents’ utterances 

What acoustic aspect of the parents’ voices do they imitate? 

Speaker-invariant holistic pattern in an utterance 
Completely transform-invariant features -- f-divergence -- 

Implementation of word Gestalt as relative timbre perception 

Application of speech structure to robust speech processing 

Radical but interesting discussion 
An interesting link to some behaviors found in language disorder 

An interesting thought experiment



Receptors receive very physically-variable stimuli. 
Variability in appearance 

A dog with different angles 

A dog with different distances 

Variability in color 
Flowers at sunrise and those at sunset 

Flowers seen through colored glasses 

Variability in pitch 
Humming of a male and that of a female 

Key change (transposition) of a melody 

Variability in timbre 
A male’s “hello” and a female’s 

An adult’s “hello” and a child’s 

But we can find the equivalence among them easily.

Physical variability and cognitive constancy
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Stimuli deformation caused by static bias 
and invariant perception of these stimuli



Invariant pitch perception against its bias

Key change (transposition) of a melody [Higashikawa’05] 

Absolute (perfect) pitch (Do, Re, Mi... = pitch names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = Re, Ti, Re, So, Mi, So, So, Re. 

Relative pitch who can transcribe (Do, Re... = syllable names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = So, Mi, So, Do, La, Do, Do, So. 

Relative pitch who cannot transcribe 
1 = La, La, La, La, La, La, La, La.         2 = La, La, La, La, La, La, La, La 

Different / identical tones are claimed to be identical / different. 

Not fundamental frequency (absolute property) of each tone, but it 
only matters what contrast each tone has to its surrounding tones.

1
2

（音名）

（階名）



A melody and its transposed version [Higashikawa’05] 

Listeners with RP can perceive the same sound name sequence. 
So Mi So Do  /  Ra Do Do So  /  So Do Re Mi Re Do  /  Re 

The same sound distribution pattern is found in 1) and 2).

1)

2)

1 1 1 1 1 1 1
2 2 2 2 2 2

2
2

1

3 wholetones

Invariant pitch perception against its bias

log(F0) log(2F0)

w w w w ws s
Do Re Mi Fa So La Ti Do

w=wholetone s =semitone

https://ja.wikipedia.org/wiki/音度

But it is very difficult to label a single tone 
because there is no contrast at all.

https://ja.wikipedia.org/wiki/%E9%9F%B3%E5%BA%A6


Invariant pitch perception against its bias

Key change (transposition) of a melody [Higashikawa’05] 

Absolute (perfect) pitch (Do, Re, Mi... = pitch names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = Re, Ti, Re, So, Mi, So, So, Re. 

Relative pitch who can transcribe (Do, Re... = syllable names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = So, Mi, So, Do, La, Do, Do, So. 

Relative pitch who cannot transcribe 
1 = La, La, La, La, La, La, La, La.         2 = La, La, La, La, La, La, La, La 

Different / identical tones are claimed to be identical / different. 

Not fundamental frequency (absolute property) of each tone, but it 
only matters what contrast each tone has to its surrounding tones.

1
2

（音名）

（階名）

Physiologically identical sounds may possess different 
values in conformity with the whole sound system, i.e. 
in their relations to the other sounds.



Key-invariant arrangement of tones and its variants 

Spk-invariant arrangement of vowels and its variants

Western = 5 whole + 2 semi 

D to I = classical church music 

Arabic = with non-semi intervals 
Western music in Arabic scale

Relative pitch vs. relative timbre

Major→
Minor→

←Arabic scale

Williamsport, PA Chicago, IL Ann Arbor, MI Rochester, NY

U
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I

Physiologically identical sounds may possess different 
values in conformity with the whole sound system, i.e. 
in their relations to the other sounds.



The Rubik’s cube seen through colored glasses [Lotto’99] 

We perceive that the two cubes are identical. 

Different / identical colors are claimed to be identical / different. 

Not only wavelength (absolute property) of each patch, but also it 
matters what contrast each patch has to its surrounding patches.

Invariant color perception against its bias
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The Rubik’s cube seen through colored glasses [Lotto’99] 

We perceive that the two cubes are identical. 

Different / identical colors are claimed to be identical / different. 

Not only wavelength (absolute property) of each patch, but also it 
matters what contrast each patch has to its surrounding patches.

Invariant color perception against its bias



Invariant color perception against its bias

Reprinted from Dale Purves, R. Beau Lotto, Surajit Nundy, "Why We See What We Do,", American Scientist, vol. 90, no. 
3, page 236. www.americanscientist.org/template/AssetDetail/assetid/14755.

Physiologically identical sounds may possess different 
values in conformity with the whole sound system, i.e. 
in their relations to the other sounds.



Do you still remember this?



An evolutional point of view

How old is the relative perception in evolution? [Briscoe’01]



An evolutional point of view

How old is the relative perception in evolution? [Hauser’03]

1
2

1 = 2
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Vocal learning (including vocal imitation) 
A imitate(s) B vocally. 

A: students and B: teachers 

A: infants and B: parents (caretakers) 

A: you and B: professional singer (Karaoke) 

But A do not impersonate B. 

Acoustically mismatched imitation. 

We’re very insensitive to speaker identity transmitted via speech. 

Acoustically matched imitation is often found in 
Autistics (自閉症), who have language disorder [Grandin’96] 

Animals’ vocal imitation (birds, dolphins, whales, etc) [Okanoya’08]

Insensitivity in our language learning
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Menu of the last four lectures

Robust processing of easily changeable stimuli 
Robust processing of general sensory stimuli 

Any difference in the processing between humans and animals? 

Human development of spoken language 
Infants’ vocal imitation of their parents’ utterances 

What acoustic aspect of the parents’ voices do they imitate? 

Speaker-invariant holistic pattern in an utterance 
Completely transform-invariant features -- f-divergence -- 

Implementation of word Gestalt as relative timbre perception 

Application of speech structure to robust speech processing 

Radical but interesting discussion 
An interesting link to some behaviors found in language disorder 

An interesting thought experiment



Factors causing static pitch bias in speech 
Length and mass of the vocal chords 

Factors causing static timbre bias in speech 
Size and shape of the vocal tract

?

Invariant timbre perception against its bias
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The world-tiniest high school girl!!

Linearly size-reduced individual!?



Invariant and constant perception wrt. color and pitch 
Contrast-based information processing is important. 

Holistic & relational processing enables element identification.

Invariant timbre perception against its bias
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De facto standard for timbre variability 
Segmentation of speech into elements 

Statistical models for individual elements

hundreds to 
thousands

Invariant timbre perception against its bias

a i u e o
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73cm-tall



?

Machine strategy (engineers’ strategy): ASR 
Collecting a huge amount of speaker-balanced data 

Statistical training of acoustic models of individual phonemes (allophones) 

Adaptation of the models to new environments and speakers 
Acoustic mismatch bet. training and testing conditions must be reduced. 

Human strategy: HSR 
A major part of the utterances an infant hears are from its parents. 

The utterances one can hear are extremely speaker-biased. 

Infants don’t care about the mismatch in lang. acquisition. 
Their vocal imitation is not acoustic, it is not impersonation!!

A difference bet. machines and humans



De facto standard acoustic analysis of speech

Feature separation to find specific info.

speech
waveforms
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characteristics
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Spectrum envelope-based feature such as CEP:  
But    depends on all the three kinds of info. (ling, para-ling, extra-ling). 

How to suppress extra-linguistic variation in    ? 
Feature normalization: transforming    to that of the standard speaker 

Model adaptation: modifying model parameters to fit to the input speaker 

Statistical independence: hiding these variation through sample collection 

Physical independence: pursuing features invariant to these variation 

   :

Insensitivity to 
pitch differences
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VI = children’s active imitation of parents’ utterances 
Language acquisition is based on vocal imitation [Jusczyk’00]. 

VI is very rare in animals. No other primate does VI [Gruhn’06]. 

Only small birds, whales, and dolphins do VI [Okanoya’08]. 

A’s VI = acoustic imitation but H’s VI = acoustic = ?? 
Acoustic imitation performed by myna birds [Miyamoto’95] 

They imitate the sounds of cars, doors, dogs, cats as well as human voices. 

Hearing a very good myna bird say something, one can guess its owner. 

Beyond-scale imitation of utterances performed by children 
No one can guess a parent by hearing the voices of his/her child. 

Very weird imitation from a viewpoint of animal science [Okanoya’08].

Language acquisition through vocal imitation

?



Language acquisition through vocal imitation

Utterance    symbol sequence    production of each sym. 

Phonemic awareness is too poor to decompose an utterance. 

Several answers from developmental psychology 
Holistic/related sound patterns embedded in utterances 

Holistic wordform [Kato’03] 

Word Gestalt [Hayakawa’06] 

Related spectrum pattern [Lieberman’80] 

The patterns have to include no speaker information in themselves. 
If they do it, children have to try to impersonate their fathers. 

What is the speaker-invariant and holistic pattern in an utterance?
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Factors causing static pitch bias in speech 
Length and mass of the vocal chords 

Factors causing static timbre bias in speech 
Size and shape of the vocal tract

Invariant timbre perception against its bias
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Invariant and constant perception wrt. color and pitch 
Contrast-based information processing is important. 

Holistic & relational processing enables element identification.

Invariant timbre perception against its bias
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Invariant and constant perception wrt. timbre 
Contrast-based information processing is important. 

Holistic & relational processing enables element identification.

P P



Menu of the last four lectures

Robust processing of easily changeable stimuli 
Robust processing of general sensory stimuli 

Any difference in the processing between humans and animals? 

Human development of spoken language 
Infants’ vocal imitation of their parents’ utterances 

What acoustic aspect of the parents’ voices do they imitate? 

Speaker-invariant holistic pattern in an utterance 
Completely transform-invariant features -- f-divergence -- 

Implementation of word Gestalt as relative timbre perception 

Application of speech structure to robust speech processing 

Radical but interesting discussion 
An interesting link to some behaviors found in language disorder 

An interesting thought experiment


