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Language acquisition through vocal imitatiof

¢ VI = children’s active imitation of parents’ utterances
@ Language acquisition is based on vocal imitation [Jusczyk'00].
@ VI is very rare in animals. No other primate does VI [Gruhn’06].
@ Only small birds, whales, and dolphins do VI [Okanoya’08].

¢ A’s VI = acoustic imitation but H’s VI # acoustic = 22

@ Acoustic imitation performed by myna birds [Miyamoto’95]
¢ They imitate the sounds of cars, doors, dogs, cats as well as human voices.
< Hearing a very good myna bird say something, one can guess its owner.

@ Beyond-scale imitation of utterances performed by children

< No one can guess a parent by hearing the voices of his/her child.

¢ Very weird imitation from a viewpoint of animal science [Okanoya’08].




“Claims from a professor of animal sciences”

¢ Dr. Temple Grandin @ Colorado State University

@ She is herself autistic (Asperger syndrome).

@ Autistics often imitate the utterances of TV/radio commercials.
< TV/radio often gives “acoustically” identical utterances.

< The utterances from family members change “acoustically” time to time.

@ They often imitate the sounds of objects such as cars, doors, etc.

< These sounds, including human voices, are just acoustic sounds.

¢ Interesting claims from her

@ Similarity of information processing between animals and autistics
@ Storing the detailed aspects of input stimuli as they are in the brain
¢ Animal : local / detail / absolute | Co Animals

¢ Human : holistic / abstract / relative - -

© Good ability to generalize




Relative pitch vs. relative timbre
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i Relative pitch vs. relative timbre

¢ Key-invariant arrangement of tones and its variants
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‘What's hard to do only with relative timbre?

¢ People with RP who can transcribe a melody cannot
@ label a single tone using a pitch name or a syllable name.
@ Who cannot label a single speech sound (vowel sound)?
¢ Identification of vowels produced by giants and fairies

@ Difficult to label isolated vowel sounds [Aoki’04]

@ Possible to transcribe a meaningless sequence of morae [Hayashi’07]
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“ Another hard thing to do for RP listeners *

¢ Hard task for those who cannot transcribe a melody

@ Keep the third tone in a given melody in mind. Then, raise your
hand if you find the same tone in a new melody.

¢ If difficult to transcribe it using symbols, this request has to be hard.

¢ Hard task for the speech-version of these people

@ Keep the third sound in a given utterance in mind. Then, raise your
hand if you find the same sound in a new utterance.

¢ If difficult to transcribe it using symbols, this request has to be hard.
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“Separately brought up identical twins”

¢ The parents get divorced immediately after the birth.
@ The twins were brought up separately by the parents.

@ What kind of pron. will the twins have acquired 5 years later?
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Feature separation to find specific info.

Insensitivity to
¢ De facto standard acoustic analysis of s pitch differences
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¢ Two acoustic models for speech/speaker recognition

@ Speaker-independent acoustic model for word recognition
Polw) = 3, P(o,slw) = >, P(ojw, s)P(s|w) ~ >, Plo|lw, ) P(s)
& Text—independent acoustic model for speaker recognition
P(ols) = ) ,, Plo,wl|s) = }_,, Plolw, s)P(w|s) ~ 3, Plo|lw, s) P(w)

@ Requwe intensive collection

& 0 — 0y + 05 is possible or not?



Complete transform-invariance

& Complete invariance between two spaces

@ An assumption

< The transform is convertible and differentiable anywhere.

@ An event in a space should be represented as distribution.

< Event p in space A is transformed into event P in space B

< p and P are physically different (/a/ of speaker A and /a/ of speaker B)
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Complete transform-invariance

¢ Any general expression for invariance?(Qiao’10]

@ BD is just one example of invariant contrasts.
@ f-divergence is invariant with any kind of transformation.
p1(x
¢ Jaiw(p1,p2) = /pz(il?)g (pQEwD dx
¢ g(t) = tlog(t) — faw =KL —div.  g(t) = vVt — —log(fain) = BD
¢ [faiv(p1,p2) = fain(P1, )
@ Invariant features have to be f-divergence.
# |f]{M(p1(a:),p2(:1:))dw is invariant with any transformation,

pl(w))

p2(x)

< The following condition has to be satistied. M = py(x)g (
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" Invariance in variability

Topological invariance Minematsu’09]

& Topology focuses on invariant features wrt. any kind of deformation.
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Invariant speech structure
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“Invariant timbre perception against its bias”

¢ Invariant and constant perception wrt. color and pitch

@ Contrast-based information processing is important.

Q Hollstlc & relational processmg enables element identification.
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“ A claim found in classical linguistics *

¢ Theory of relational invariance pakobson+'79]

@ Also known as theory of distinctive feature
@ Proposed by R. Jakobson

individual sounds and substitute a general expression r
 that 1s the common denominator of these variables.

~ Physiologically identical sounds may possess different |

1 values 1n conformity with the whole sound system, 1.e. | E SOU Ntlg
1n their relations to the other sounds.
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A new framework for “human-like”

speech machines #3

Nobuaki Minematsu




Menu of the last four lectures

¢ Robust processing of easily changeable stimuli

@ Robust processing of general sensory stimuli

@ Any difference in the processing between humans and animals?
¢ Human development of spoken language

@ Infants’ vocal imitation of their parents’ utterances

@ What acoustic aspect of the parents’ voices do they imitate?
¢ Speaker-invariant holistic pattern in an utterance

@ Completely transform-invariant features -- f-divergence --

@ Implementation of word Gestalt as relative timbre perception
pplication of speech structure to robust speech processing
¢ Radical but interesting discussion

% A hypothesis on the origin and emergence of language

% What is the definition of “human-like” robots?
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Invariant speech structure
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Application of structures to ASR

¢ A simple framework for isolated word recognition

Speech signal Statistical structure model

@ Word 1
@ Word 2

Cepstrum vector sequence@

Cepstrum distribution @

sequence (HMM)
o— —»8 —»o..8—>. °®
Distances of distributions @ .
S0 "p"

Structure (distance matrix) @

s=(s1,S2,()= m=@

@ Word N




Application of structures to ASR

¢ Two big problems
@ Too strong invariance (two different words can be the same.)
< Multi-Stream Structuralization to constrain the invariance [Asakawa’08]
@ Too high dimension (N events leads to an NC2 dimensional vector.)
< 2-stage LDA to reduce the dimension effectively [Asakawa’08]

¢ The invariance only wrt. speaker differences
@ A mathematical model for VTL differences [Pitz,05]

< The invariance only wrt. any kind of band matrix (¢/ = Ac)
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VTLD = X matrix A g

¢ Vocal tract length difference

@ Can be approximated as multiplication of matrix A in cep. domain.

¢ A is represented as warping parameter q.
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Application of structures to ASR 0
¢ Two big problems
@ Too strong invariance (two different words can be the same.)

< Multi-Stream Structuralization to constrain the invariance [Asakawa’08]

@ Too high dimension (N events leads to an nC2 dimensional vector.)

< 2-stage LDA to reduce the dimension effectively [Asakawa’08]
¢ The invariance only wrt. speaker differences

@ A mathematical model for VTL differences [Pitz,05]

¢ The invariance only wrt. any kind of band matrix (¢’ = Ac)
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i Application of structures to ASR

«

¢ Isolated word recognition using warped utterances

@ Word =V1V2V3V4Vs such as /eoaui/, PP = 120 (CL=0.8%)

@ Word-based HMMs (20 states) vs. word-based structures (20 events)
¢ Training = 4M+4F adults, testing = other 4AM+4F with various VTLs

@ 4,130-speaker triphone HMMs are also tested with 0.30.

& The speaker-independent HMMs widely used as baseline model in Japan

— 100 train spk = 8

> 80 test spk =8

= PP=120

B 60 4130-speaker | Word HMM (205)
§ 40 trjp_hg_n_e_]jM_M;ﬂ 7 matched HMMs
T ‘ Structure (20S5)

S

s 20 v




Application of structures to ASR i

¢ Isolated word recognition using warped utterances
@ Word = phoneme-balanced word, PP = 212

< Mora-based length of words = 3 to 7

@ Word-based HMMs (25 states) vs. word-based structures (25 events)

¢ Training = 15M+15F adults, testing = other 15M+15F with various VTLs
100

—@ *—o—0o—90

17 sets of HMMs trained

under matched conditions A single set of

structure models
trained withaax =0

A set of HMMs
trained withax=0

Recognition rate [%]
(€]
o

04 -03 02 -01 00 01 02 03 04
Warping parameter (<x) used in testing




Application of structures to LVCSR

¢ Application to more realistic ASR tasks [suzuki+'15]
@ Digits recognition and LVCSR (dictation)

¢ Use of structural features in discriminative reranking

@ Str. scores and ASR scores are combined with average perceptron.

Input speech

1. :

HMM-based ASR

- | 1
Acoust(lgcz model HypotPesis 1 Hypothesis 2 ¢ o o
|

Language model [
Phone alignments

2. ¥

Extract an invariant structure
|

3 Invariant structure

o ¥
@"> Calculate a structure score
|

> € > > >

Phone alignment r e i n

5y 6D () (9
%W

Feature vector sequence

Distribution sequence

Invariant structure

-«

Statistical
edge model 4

Structure score  ASR score
\ A v

Re-ranking




Application of structures to LVCSR  ©

¢ Continuous digits recognition 040 —
@ Language = Japanese gzzz | Nae e
@ Baseline = GMM-HMM ASR G a0 I
@ Reranking = averaged perceptron 032 B M
@ Error reduction rate = 30% e s 0 15 2 25 %
# of iteration (T)

¢ Large vocabulary continuous speech recognition
@ Language = Japanese
@ Baseline = DNN-HMM ASR Many errors are due to

a large number of

G . =
2 Reranking = averaged perceptron homonyms in Japanese.

@ Error reduction rate = 5%

/"ﬁ—'v—'""""""'*'ﬁ'f""' P

Table 6: CERs of the LVCSR experiment.
Baseline Proposed Relative improvement

2.67% 2.53% 5.24%




Language acquisition through vocal imitatiof

¢ Utterance —symbol sequence.— production of each sym.

> & 5
/helou/ —=

@ Phonemic awareness is too poor to decompose an utterance.

¢ Several answers from developmental psychology
@ Holistic/related sound patterns embedded in utterances

< Holistic wordform [Kato’03]

< Word Gestalt [Hayakawa’06]

s Related spectrum pattern [Lieberman’80]

No mathematical
formulation

@ The patterns have to include no speaker information in themselves.
< If they do it, children have to try to impersonate their fathers.

< What is the speaker-invariant and holistic pattern in an utterance?
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Structure-to-speech conversion

¢ Speech representation with extra-ling. features removed

@ Speaker-specific vocal tract features are removed.

@ With them, we can identify speakers by hearing voices.




Speech generation based on
infant-like vocal imitation
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How to implement the vocal imitation?

¢ Extraction of a structure through training of an HMM

1. Speech waveforms 4. Bhattacharyya distances ]

ey H\‘ LSS5~
| 2, e e sequence@ 5. Structure (dlstance matrix) |

| 0
; - W 5= 5= T | = 59

| structure vector
- 3. Cepstrum distribution @

! sequence (HMM) 8 8
‘ MAP estlmatlon — =
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How to implement the vocal imitation?

& Acoustic instances are searched for in the voice space.

@ Initial conditions : a few acoustic instances given from an infant

@ Constrained conditions : speech Gestalt (distance matrix)
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How to implement the vocal imitation?

¢ Geometrical interpretation of BD-based constraints
1 i 1 5
BD(pi1(z), pa(2)) = g(,ul m N2)Tz121(,u1 — p2) + 5 In \2‘31@3‘2\

@ Search for a new target using BD(1,new), BD(2,new), BD(3,new)...

< Ypewis given. Only finew is searched for in the current paper.

CQA

. multiple solutions
---------- Solution —s averaging

=

y




“ An experiment with real vocal imitation *

¢ Demonstration with my wife and daughter

@ Constraint conditions are given by my wife.

@ Initial conditions are given by my daughter.




“ An experiment with real vocal imitation

¢ Demonstration with my wife and daughter

@ Constraint conditions are given by my wife.

@ Initial conditions are given by my daughter.

Word HMM (208)
+17 matched HMMs
Structure (20S)
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A big problem in CALL development

# A very important and requisite function for CALL systems

@ The system has to be able to ignore speaker differences.
< Age and gender (the size and length of the vocal tube)
< But no current system can ignore speaker differences well enough.
@ Requirement of “acoustic matchedness” bet. HMMs and learners

< Collection of children’s speech or speaker adaptation of adult HMMs

¢ Q: Learning to pronounce is learning to impersonate?

~  Mismatch ¢
v __ problem

\v .. ; v R —
@ Speech model for another separation mn -.
& Separation between source and filter ' _

| g 0 o
& Separation between ling. and extra-ling. >

,,,,,
. -
o '
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A big solution for CALL development

¢ To which does Minematsu’s normal English sound closer ?

speaker USA/F12 x Minematsu d Minematsu
gender female x male O male
age ¢ x 37 O 37
mic Sennheiser x cheap mic O cheap mic
om0 O
AD SONY DAT x PowerBookO PowerBook
proficiency perfect A good x Japanized

(Minematsu@ICSLP 2004)
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A big solution for CALL development ~
¢ Proficiency estimation based on P(o | M)
o
. Minematsu

1 (apanized)

Minematsu
USA/M08 | | TI (Japanized)

(Minematsu@ICSLP 2004)
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A big solution for CALL development ~
¢ Proficiency estimation based on P(M | 0) = GOP
P(Mlo) = P(p1,...pxlo)

B P(o|p1,-..,pn)P(p1, .-, PN) ' l

>, Plolp1,...,pn)P(p1, ..., pN) T;‘;;

N P(o|p1,...,pN)

N >, P(olp1; .., DN)

N P(o|p1,...,pN) J
max,, P(o|p1,...,pN) ' I

_ P(o|M) matsu
max s P(o|M) nized)

GOP (Goodness Of Pronunciation)

y

(Minematsu@ICSLP 2004)
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A big solution for CALL development ~

¢ Proficiency estimation based on P(M | 0) = GOP

| Minematsu
(Japanized)

Minematsu
(Japanized)

(Minematsu@ICSLP 2004)
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A big solution for CALL development ~

¢ Proficiency estimation based on structural distance

. Minematsu
' (Japanized)

¢ @ |
Y . Minematsu
tn_mmn

USA/M08 |

(Japanized)

(Minematsu@ICSLP 2004)
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Application of structures to CALL

¢ Vowel structure estimated from multiple utterances

beat
abou bit
bird / bet
bought bat
boot i but
K g

pot . put

«



Application of structures to CALL

¢ Vowel structure estimated from multiple utterances

beat
b i '
a 019\ /\blt
1| (teg e 11
birde? ; 7w bet
3
bought /X /\ bat
11
boot il /N but
AN

pot put

>
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Application of structures to CALL

¢ Vowel structure estimated from multiple utterances

beat
abo% i bit
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Application of structures to CALL

¢ Vowel structure estimated from multiple utterances

beat
e .
abo% /\blt
birde? 7w bet
bought /X /\ bat
boot il /N but
AN

pot put

>
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Application of structures to CALL

¢ Vowel structure estimated from multiple utterances

beat
abmﬁ\ i bit

iy
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Application of structures to CALL

¢ Vowel structure estimated from multiple utterances

beat

abo% i /\bit

birdeow

Evaluation is done not based on whether each vowel sound has
adequate acoustic property independently of others but based on
whether a good vowel system underlies a learner’s pronunciation.

— - - o




Clustering of learners

¢ Preparation of data -- 96 simulated learners --

@ 12 Japanese students who are returnees from US (A to L)
@ English words of /b-V-t/ and Japanese words of /b-V-to/

T

< AE vowels : 1 word utterance per vowel
< ) vowels :5 word utterances per vowel

< Vowel segments are extracted automatically to estimate a vowel system.

¢ Replacement of some AE vowels with ] vowels

a x A 9 5 M I 1 U u & ) ‘ '
FE E E E E a
E E E E E E .
E L E E E E 1
E E E E E u

E 1 1 E &

1D 1D FE E E Kk C
E E E E E E E E E E E 0




Clustering

of learners

¢ Structure-to-structure distance measure

@ Euclidian distance between two distance matrices

1.2 3 45 JIH201314,15]

VA W N =
=

)

=
VA W N =
-

)

-

@ Can approximate the structura

1
\/M Nl el A
1<

distance after shift and rotation

Minimum of the total distances
between corresponding points



Clustering of learners

& 96 x 96 large distance matrix (12 spk x 8 pron.)

1 2 3 4 5 @ 7 =reveeesssssnssssssssnnsnsnnnnas

@ Speakers:t AtoL ! 0
@ Prons: 1 to 8 I
5 0
6 0
4
Pronunciation i Speaker
classification 0, classification

96




" Clustering of learners

¢ Another distance measure between two structures

@ Contrast-based comparison
@ Substance-based comparison

T \/%Z(Sisz‘j)Q

C




Clustering of learners

¢ Contrast-based comparison

i Thind

KACD%
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i Clustering of learners

& Contrast-based comparison

I/ Fﬁﬁfﬁ Tﬁm 1

s KACDEHBGALDFHEIBGKCLKCAFIJLEHBDGBLGFFCEDHKKGKAEIDHJCJAAIIACIFHJJJLEKGBDBLGIFHADKCELLGBBDEFCJHjJ
1 8

I
1111111113133333333336666666666665552555552528222222258558444444134444447777777777728882888878
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¢ Substance-based comparison

e eI e

LLLLLLLLEEEEEEEEJ JJ JKKKKKKKKITIIIIITAAAAAAAADDDDDDDDBBBBBBBBGGGGGGGGFFFFFFFFHHHHHHHHCCCCCCCC
7834162587341625374 25648137143785264613782578251634347816251734256825176834371425681734256§}




Clustering of “Kashiwa” Englishes "

¢ Classification of 600 citizens living in Kashiwa city

Gxxgle Pronunciaton in Kag&wa Area




The current state of English

¢ It is the only language used for global communication.
@ About 1.5 billion users on earth
¢ It has the largest diversity in its form.

@ Internationalization of a thing inevitably alters its form.

@ English is not exceptional.

< Syntax, pragmatics, lexical choice, spelling, pronunciation, etc
¢ World Englishes (WE)

@ Three circles model [Kachru1992]

¢ E as native / official / foreign language o= = el

Q No standard pronunciation

< AE and BE are just two examples
of accented Engilshes.



The current state of English

¢ It is the only language used for global communication.
@ About 1.5 billion users on earth
¢ It has the largest diversity in its form.

@ Internationalization of a thing inevitably alters its form.

@ English is not exceptional.

< Syntax, pragmatics, lexical choice, spelling, pronunciation, etc

¢ World Englishes (WE)

@ Three circles model [Kachru1992]

< E as native / official / foreign language Expanding circle

@ No standard pronunciation ‘ﬂé!
< AE and BE are just two examples Outer circle

of accented Engilshes. &‘ [;
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Pronunciation diversity of WE

¢ Is English a useful tool or a troublesome tool?

@ A useful tool for global communication

< The same language can be shared by all.

@ A troublesome tool for global communication

< Its pronunciation diversity can cause miscommunications.
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Diversity of pronunciation in WE

¢ What is the minimal unit and how many units?

Country?

l

Region / State / Prefecture?

l

City / Town / Village?

l

Individual!

[Kachru 1992]
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Diversity of pronunciation in WE ¥

¢ What is the minimal unit and how many units?

Country?

l

Region / State / Prefecture?

l

City / Town / Village?

l

Individual!

1.5 billions!

[Kachru 1992]
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Speaker-basis pronunciation clustering

¢ Requires a speaker-basis pronunciation distance matrix

d11 d12 le o
d21 d22 d2N n-“
o e |
d31 gl © A0g
| 1 B n,
9]
| dyi1 dyo ... dyn | !

¢ What is technically challenging?

@ To which is Minematsu’s natural pronunciation closer?

“Those answers will be straightforward if you think them through carefullv firct.”

< Pronunciation distance = phonetic distance between speake ﬁmz\/‘%

4
# acoustic distance between speakel X =
# spectral distance between speaker N

AN
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Pron. clustering using real data of WE

¢ Speech Accent Archive (SAA) (Weinberger'13]

@ A common paragraph read by about 1.8K international speakers

< The paragraph is designed to achieve high phonemic coverage of AE.

@ Speech samples and their narrow

Please call Stella. Ask her to bring these things with her from
the store: Six spoons of fresh snow peas, five thick slabs of blue
cheese, and maybe a snack for her brother Bob. We also need a
small plastic snake and a big toy frog for the kids. She can
scoop these things into three red bags, and we will go meet her

IPA transcripts are provided.

Wednesday at the train station.
- > v -
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Pron. clustering using real data of WE

¢ Speech Accent Archive (SAA) (weinberger'13]
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Pron.

N

& Speech Ac

@ A commo
& The para
@ Speech sa

Please call Stella Ask
~ the store: Six spoons o
cheese, and maybe a si
small plastic snake an
scoop these things into
Wednesday at the train

'YW

Vowels and Consonants used in Acoustic Analysis

153. kx

l.i |2 3, i | 4. | 3.1 6.1
7.y 8.1 9. 10. 1 1. ] 12.1
13. e 14. & 15,8 | 16.¢ | 17.¢ 18. ¢
192 | 202 |2l= 222 |23a |24i
25.1 26. 3 273 28. u 29.y 30. >
31.3 32. 3 33 e 34, % 5.8 36.0
37.0 38. 9 39,5 40. 5 41.5 42.
43. w 44, i 45,1 | 46.u 47. 1 48. u:
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141.h | 142w 143.q [44. pd
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Pron. clustering only based

N speakers

Al iz kol atal szk hz t1lA)
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[Miller et al.’95, Bailey et al."05, Wieling et al."12]
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Pron. clustering only based on SAA
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Pron. clustering only based on SAA

N speakers

Pron. Structure
Analysis
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IPA-based reference pron. distance

# Optimal alignment bet. two transcripts [shen etal./13]

@ Dynamic Time Warping (DTW) ’ ki l| e
< DTW can minimize the accumulated distortion. = M T
p.hliz kATIl stElal b1@ul ?701so0
O U I I B 1L V==
phlis kO1.G stE1L1VIH b1lu A s o

< Similar to edit-distance-based alignment of transcripts [Wieling et. al,’12]
@ DTW requires a distance matrix of all the 153 IPA symbols used.
< 20 productions for each by a phonetician
< HMM is built for each symbol (SD-HMM)
¢ HMM = Hidden Markov Model

. Acoustic distance is obtained from '
each HMM (phone) pair.

153
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Vowels and Consonants used in Acoustic Analysis

. 3 | 4.i | 5.1 6.1
7.y 8. | 9.1 10. 1 11.; 12.1
13.¢ 14. & 15.8 | 16.¢ | 17.¢ 18.
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“ Pron. distance calculation using structure *

¢ A common paragraph to pron. structure

Please call Stella. Ask her to “ 221
bring these things with her

from the store: Six spoons " M ﬁ '
of fresh snow peas, five NGy o

thick slabs of blue cheese, / =i

and maybe a snack .......... y bl 4

221

fictn

IPA-based dist;;r-l-::e i) il

1.5 billions
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Pron. clustering using real data of WE

¢ Use of IPA transcripts to prepare reference distances

& DTW—based calculation of the reference distance bet. transcripts

[ ha kol atae szk h: IJ’IJ
d: -fmv.nf- 3t
i ool Laly
PR ERT:E ! aF
"z"'-uu ki e

[ lia kool atac sak hs |.f|J
q: -j’mv.nf- 3 {5 =
wigd ool Ly
alE -hk sptpe RO
"'z.°'»;nu Lis ..xJ!
hasso kop wd alan

6
hasso Lop v falah

¢ Prediction of the ref. distances using pron. structures

@ SVR-based supervised prediction using structures as input features

[ i kol atae sak h: |nJ
d: -I'mwn’- 3t =
i ool Laly
Al e R sgLpe 1
.".'."v;l] sbi s Lx&
hasso kap v falan

[ I kol atax sak hs |.ﬂJ
q: -fmv.nf- 3t =
wigd ool Ly
lufE -hk B[ 2E
"z"’r;n tbis ..d

hasso Lap il inlah

# Use of phonemic transcripts to calculate distances

@ Corresponds to calculate pron. distances somewhat coarsely.

phonemic:: phonemlc )

sl ul [=fuy
udE -hk i-Lp e
°'-nu

/ p3lizz kol stilo &sk hsi t™6 by / #symbols = 153

Lis :c& 7

g TEn = g 7E
h‘nllwil‘l h‘nllwil‘l

[pahliyzkaolstihlahaesk #symbols =39
hhahrtowbrihng ]
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“  Pron. clustering using real data of WE

¢ SVR-based prediction of IPA distances [kasahara'14]

[ z’;‘
-

@ Pronunciation structure extraction from an SAA sample

[~ iz kol atale szk hz t1lh)
A dee wik 3 ot s
wigd ool Lafuw
lal g wh e pe  BOL
g Enebi v sk

haaso Eap el falah n™

[~ iz kol atale sak hz t1lh)
LR TR TR Sl
wigd oo ol Lafuur

Jud B AR g e [

g ek v soxk -
hasio Eapwd faladh n

, ﬂ ool MAP 9@_@ structure
@ M —> > —> calculation

adaptation paragraph

TR "please call Stella." adapted HMM

N \
HMM 3 . _ 221 x 221 . ol
training paragraph distance matrix \
UBM-HMM

@ Differential features from two pronunciation structures

G Tt o matrix ootwon i twa
OOO Si; — Tyl OOO
% — - %
{Sis} {Dij}




Pron. clustering using real data of SAA

¢ Three modes of preparing training data and testing data

@ Speaker-open mode

< SAA — two speaker groups of training and testing

@ Speaker-pair-open mode
< SAA — speaker pairs — two speaker pair groups of training and testing

@ Speaker-open and speaker-pair-open mode

speaker-open

speaker-pair-open

training testing
A-B D-H
B-C Y-D
B-F G-X
Z-A M-J

training testing
A-B A-C

B-C B-D

B-F C-F

Z-B

Z-A

Speakers are not shared.
Speaker pairs are not shared.

Speakers are shared.
Speaker pairs are not shared.

—

training testing
{Ti} {Xi}
T1-T2 X1-T1
T1-T3 X1-T2
Ta-T7 X1-T3

T5-To

X2-Ts

< speaker-open

<— speaker-pair-open

Speakers are shared only partially.
Speakers pairs are not shared.

>
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Pron. clustering using real data of SAA

¢ Corr. bet. IPA distances and predicted distances [sato+'15]

mode spk-open spk-pair-open both
COTIT. 0.5 0.87 0.77

¢ Comparison with other possible methods

@ Transcript-to-transcript distance based on phonemes
< Phone : minimum unit of sounds perceived by phoneticians

< Phoneme : minimum unit of sounds perceived by general listeners

@ Rule-based conversion from IPA trans. to AE phonemic trans.
< Trans.-to-trans. distances were obtained with phoneme HMMs + DTW.
¢ Corr. =0.75

@ Automatic AE phoneme recognition for SAA utterances

= Phoneme recognition accuracy = 73.5% W R
< Corr. =0.46
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Pron. clustering using real data of SAA ~

¢ Three modes of preparing training data and testing data
@ Speaker-open mode
¢ SAA — two speaker groups of training and testing
@ Speaker-pair-open mode
< SAA — speaker pairs — two speaker pair groups of training and testing
@ Speaker-open and speaker-pair-open mode

speaker-open speaker-pair-open

training testing training testing

A-B D-H A-B A-C

B-C Y-D B-C B-D

B-F G-X B-F C-F

Z-A M-J Z-A Z-B
i ' i i ——

Speakers are not shared. Speakers are shared. g~ e
Speaker pairs are not shared. Speaker pairs are not shai {Xi} <— speaker-open

X1-T1
X1-T2 _
X1 - T3 | <€— speaker-pair-open
X2-Ts

Speakers are shared only partially.
opeakers pairs are_notshared. ..




A possible applicationxawases1a

¢ Accent-based browser of WE from “your” viewpoint
@ Your pronunciation is placed at the origin.
@ Accent distance is represented as geometric distance from you.

@ Gender and age is also shown in the visualization.




Menu of the last four lectures

¢ Robust processing of easily changeable stimuli

@ Robust processing of general sensory stimuli

@ Any difference in the processing between humans and animals?
¢ Human development of spoken language

@ Infants’ vocal imitation of their parents’ utterances

@ What acoustic aspect of the parents’ voices do they imitate?
¢ Speaker-invariant holistic pattern in an utterance

@ Completely transform-invariant features -- f-divergence --

@ Implementation of word Gestalt as relative timbre perception

@ Application of speech structure to robust speech processing

adical but interesting discussion

% A hypothesis on the origin and emergence of language

% What is the definition of “human-like” robots?
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