Nonparallel Training of Exemplar-based Voice Conversion System Using INCA-based Alignment Technique

Hitoshi Suda, Gaku Kotani, Daisuke Saito The University of Tokyo

INTERSPEECH 2020 Virtual Conference

more

Required external data less more less **ASR**→**TTS** Many-to-one Many-to-many [Sun+, 2016] **Noisy channel** Goal Eigenvoice [Saito+, 2012] [Toda+, 2007] **Adaptive RBM** Required [Nakashika+, 2016] **CVAE** data for Multiple NMF [Hsu+, 2017] [Aihara+, 2016] source **INCA-GMM** StarGAN-VC One-to-one speaker [Erro+, 2010] [Kameoka+, 2018] **NTD-VC** [Takashima+, 2018] CycleGAN-VC [Kaneko+, 2017]

Outline

- Baseline 1: NMF-based voice conversion
- Baseline 2: INCA algorithm
- Proposed: Nonparallel training of NMF-based voice conversion
- Experiments

[D. D. Lee+, 1999]

Given non-negative matrix

Base matrix (Exemplars, Dictionary)

• NMF acquires $m{H}$ and $m{U}$ by minimizing divergence $\mathcal{D}(m{Y}|m{H}m{U})$

Non-negative matrix factorization (NMF)

 Supposing input matrix is spectrogram, exemplars contain individuality and activity contains linguistic information

[R. Takashima+, 2012]

Shared activity

NMF-based Voice Conversion (NMF-VC)

NMF-based Voice Conversion (NMF-VC)

[R. Takashima+, 2012]

- Uses parallel exemplars as a conversion model
 - NMF-VC is called "exemplar-based VC"
- √ Fast on GPU, because NMF uses only basic matrix operations

- X Requires parallel corpora
- X Degrades because of activation mismatch

Outline

- Baseline 1: NMF-based voice conversion
- Baseline 2: INCA algorithm
- Proposed: Nonparallel training of NMF-based voice conversion
- Experiments

INCA algorithm

[D. Erro+, 2010]

- Iterative combination of a Nearest neighbor search step and a Conversion step Alignment method
- Algorithm to acquire alignment of nonparallel corpora

INCA algorithm

INCA algorithm

- √ Applicable to any parallel VC frameworks
- √ Easy to implement

- X Requires as much data as parallel VC systems
 - VC system does not require much data for source speaker
 - VC system is a generator of target speaker

Outline

- Baseline 1: NMF-based voice conversion
- Baseline 2: INCA algorithm
- Proposed: Nonparallel training of NMF-based voice conversion
- Experiments

Revisit to NMF-VC

 NMF is equivalent to alignment from spectrogram to exemplars

Proposed training method of NMF-VC

Acquires activation of NMF-VC using INCA technique

Activity is irrelevant to speaker of exemplars

Proposed training method of NMF-VC

Outline

- Baseline 1: NMF-based voice conversion
- Baseline 2: INCA algorithm
- Proposed: Nonparallel training of NMF-based voice conversion
- Experiments

Experimental setups

- Methods for comparison
 - CycleGAN-VC [T. Kaneko+, 2019], Parallel NMF-VC [R. Takashima+, 2012]
- Dataset: Japanese versatile speech corpus [S. Takamichi+, 2019]
- Speaker pair: JVS066 \rightarrow JVS010 (F2F), JVS054 \rightarrow JVS010 (M2F)
- Number of sentences: 60 for target speaker, 1 or 10 for source speakers, 20 for test
 - Same 60 sentences are used for source speakers in parallel NMF-VC
- Analysis / Synthesis: WORLD [M. Morise+, 2016]
- Target of decomposition: Amplitude spectrograms of WORLD spectral envelopes
- Dictionary size (number of exemplars): 200
- Conditions of subjective experiments (≥ 25 subjects)
 - A/B preference tests for naturalness
 - ABX tests for speaker similarity

Results of subjective experiments

Comparison with parallel NMF-VC

 Proposed framework outperformed conventional parallel NMF-VC framework

Results of subjective experiments

Comparison with CycleGAN-VC

 Proposed framework efficiently used a small source speakers' data

—— : 95% confidential

Results of subjective experiments

Effects of an amount of source speakers' data

 More source speakers' data provided more speaker similarity about target speaker

Audio examples

		Parallel NMF-VC	CycleGAN-VC	Proposed
Target (Female)				
F2F	Source			
	Converted			
M2F	Source			
	Converted			

- 1 sentence is used for training each source speaker
- Examples are available online (see last slide)

Conclusions

- We introduce nonparallel training method of NMF-VC inspired by the INCA algorithm
- The method achieved the goal with the small amount of the training data for source speakers

Future Works

- Higher quality conversion
- Inter-language conversion