The term of “World Englishes” describes the current and real state of English and one of their main characteristics is a large diversity of pronunciation, called accents. We have developed two techniques of individual-based clustering of the diversity [1, 2] and educationally-effective visualization of the diversity [3]. Accent clustering requires a technique to quantify the accent gap between any speaker pair and visualization requires a technique of stress-free plotting of the speakers. In the above studies, however, we developed and assessed these two techniques independently and in this paper, we assess our technique of automatic accept gap prediction when it is used for our stress-free visualization. Further, since CALL applications today are not always used in a quiet environment, we introduce a feature enhancement (denoising) technique to improve noise-robustness of accent gap prediction. Results show that our accent gap prediction shows correlation of 0.77 to IPA-based manually-defined accent gaps and that, by applying feature enhancement to noisy input utterances, our technique can predict the accent gap that could be obtained in a clean condition, when the SNR is larger than 10 [dB].

Index Terms: World Englishes, pronunciation clustering, visualization, feature enhancement, noise-robustness

1. INTRODUCTION

English is often used as a tool of international communication and this fact inevitably causes a large variation to English, depending on the language background of speakers and listeners. If we focus on the phonological and phonetic aspect, pronunciation diversity is called accents. Recently, more and more teachers accept the concept of World Englishes (WE) [4, 5] and they regard US and UK accents just as two major examples of accented English. If one accepts the concept of WE as it is, he can claim that there does not exist the standard pronunciation of English. In this situation, there will be a great interest in how one type of pronunciation compares to other varieties, not in how that type of pronunciation is incorrect compared to US or UK pronunciation.

These days, we can easily find good online resources of WE such as the TED talk archive [6] and a series of online lectures at many universities [7, 8]. If we can build an accent-based browser of WE, with which spoken documents are searched for by querying the speakers’ accent characteristics, it will become a good tool for learners to know the current and real state of English and for international business persons to make themselves accustomed to the pronunciation diversity of WE. We can find several textbooks that introduce the pronunciation diversity of WE for international business persons.

For this aim, so far, we have developed two techniques of individual-based clustering of the pronunciation diversity [1, 2] and educationally-effective visualization of the diversity [3]. Generally speaking, clustering of N items requires the distance matrix among the N items. The first technique was developed to predict the accent gap between any speaker pair to obtain the pronunciation distance matrix among speakers [1, 2]. Visualization of a distance matrix is often done by using MDS (Multi-Dimensional Scaling) or drawing its dendrogram. In either case, a result of visualization includes stress or distortion. This is inevitable because the N items often lie in a high dimensional space and visualization is a process of projecting the N items’ geometrical distribution in a high dimensional space onto a two dimensional plane. For example, if learners are scattered via MDS, some parts of the resulting chart have stress but learners cannot know which parts of the chart include stress. Pedagogically speaking, this is a serious problem. Then, we proposed a technique to realize stress-free visualization of the distance matrix by introducing a learner’s self-centered viewpoint [3].

In these two previous works, however, the two techniques were developed and assessed independently. In this paper, we firstly assess our automatic prediction of the accent gap between two speakers in the context of our stress-free visualization of learners. Secondly, we introduce a feature enhancement (denoising) technique to improve noise-robustness of accent gap prediction. These days, CALL applications are used not only in private and quiet rooms but also in public rooms such as classrooms. In these environments, some noises are inevitably added to speech input to CALL systems. Practically speaking, noise-robustness is required [9] as it is required for speech recognition systems.

The rest of this paper is structured as follows. Section 2 describes our previous works [10, 1, 2, 3] on IPA-based accent gap quantification, individual-based clustering of WE, and educationally-effective visualization of WE. In Section 3, we set up an experimental environment to assess our accent gap prediction for our stress-free visualization and some results are shown. In Section 4, after brief explanation of the feature enhancement technique that we apply here, its effectiveness will be validated. Section 5 concludes this paper with some future directions.

2. RELATED WORKS

2.1. Problem formulation of accent gap prediction

In our previous works, the problem of accent gap prediction between two speakers was formulated as regression problem to predict the reference accent gap of the two speakers automatically only by using their utterances. Here, the reference gap was obtained by comparing IPA transcripts of the two speakers’ utterances of the same and common paragraph. For this task, the Speech Accent Archive (SAA) [11]
2. IPA-based accent gap quantification

By comparing two IPA transcripts of two speakers, it is possible to quantify the accent gap between them [12, 13], where good correlation was observed between the quantified gaps and subjectively-defined gaps although prosodic characteristics are not described well on IPA transcripts. In [10], we realized another quantification method by using Dynamic Time Warping (DTW) between two transcripts. For this, the distance matrix among all the kinds of IPA phones used in the SAA had to be prepared. We built an HMM for each of the most frequent 153 phones, not phonemes, in the SAA, which can cover 95% of the phone instances found in the SAA. For each of the other 5% phones, we substituted the HMM with no diacritic that shares the same base phone. These HMMs were trained using an expert phonetician’s twenty productions of each of the 153 phones and were used to prepare the distance matrix among the phones in the SAA. In [14], our DTW-based method of accent gap quantification was compared to some conventional methods using other strategies [12, 13]. Our method showed better correlation to the accent gap subjectively rated by human listeners.

2.3. Automatic prediction of accent gaps between speakers

The IPA-based accent gap calculated via DTW was automatically predicted without IPA transcripts [1, 2]. As mentioned in Section 2.1, this problem was treated as regression problem. What kind of features should be used for accent gap prediction? It should be noted that acoustic differences between the SAA utterances of two speakers are not good features for prediction [15]. This is because acoustic differences are strongly influenced by non-linguistic factors such as differences of age and gender, which are totally irrelevant to accent gap prediction. To avoid the non-linguistic influences, in [1, 2], we used pronunciation structure analysis, which was proposed in [15]. Generally speaking, non-linguistic differences, such as differences in speaker and microphone, can be modeled mathematically as static feature transformation such as frequency warping. Pronunciation structure analysis characterizes an utterance only by contrastive features, which are mathematically proven to be independent of any invertible static feature transformation.

The pronunciation of a speaker in a red rectangle is compared to those of some speakers in the SAA. She is placed at the origin and the accent gap from her to a speaker in the archive is represented as distance between them. The angle of each archive speaker indicates his/her age. The archive speakers of the same gender are plotted in the upper semicircle and vice versa.

2.4. Educationally-effective visualization of the diversity

By using IPA-based gaps or automatically predicted gaps between any speaker pair out of N speakers, we can obtain the accent gap matrix or the pronunciation distance matrix among the N speakers. Two well-known methods to visualize a distance matrix are drawing an MDS-based scatter chart and a dendrogram from the matrix. Both methods try to project the geometrical distribution of the N speakers in the original high dimensional space onto a two-dimensional plane. If those methods are used for learners in a language class and the result is fed back to them, they will receive one and the same visualization result. It is expected, however, that different learners may pay special attention to different parts of the result. A learner’s main interest will be in the relations from himself to others, which should be emphasized for visualization, compared to the other relations. Learner-dependent visualization will be practically preferable.

A problem exists both in the above two methods. Projection of a geometrical shape in a high dimensional space onto a two-dimensional plane usually causes distortion or stress. This stress can be avoided for a learner in the N speakers by visualizing only a part of the distance matrix, which should be related to that specific learner. In other words, stress is inevitable when one attempts to visualize the entire matrix of the N speakers. Suppose that that specific learner is speaker i, \{d_{ij}\} in the matrix are relations from that learner to others and \{d_{ij}\} can be visualized even on a one-dimensional plane with no stress.

In [3], for speaker n, we used \{d_{in}\} and other non-linguistic attributes of the N speakers for effective visualization. Figure 2 shows
In a speaker-pair-open mode, when speaker pair A-B is found in the testing data, speaker pairs of A-\{x\} (x\neq B) and B-\{y\} (y\neq A) can be found in the training data. In SVR, input features are mapped into a very high-dimensional feature space, where inner product between an input sample and each of all the training samples is calculated by using a kernel function. Values of inner product can be regarded as similarity scores and regression is done by using these scores as weights. When one wants to predict the accent gap of A-B in a speaker-pair-open mode, the prediction performance is expected to be affected by whether \{x\} include a speaker who is close to B or \{y\} include a speaker who is close to A in the training data.

On the other hand in a speaker-open mode, when A-B is found in the testing data, the training data includes neither of A or B. The prediction performance is easily expected to be influenced by whether or not a speaker pair who are close enough to A-B is found in the training data.

We can claim that the task of accent gap prediction in a speaker-open mode comes to treat speaker-wise pronunciatory diversity and that the task in a speaker-open mode has to handle speaker-pair-wise pronunciation diversity. In other words, in the former mode, the magnitude of pronunciation diversity is estimated to be \(O(M)\) and it is to be \(O(M^2)\) in the latter mode, where \(M\) is the magnitude of speaker diversity. Due to these two kinds of increased difficulty, the regression performance in a speaker-open mode is much lower than that in a speaker-pair-open mode. Table 1 shows three kinds of correlation [2], correlation of predicted gaps to IPA-based gaps in the two modes, and that of phoneme-based gaps to IPA-based gaps. The phoneme-based gaps are calculated by conducting DTW over phonemic transcripts of the SAA utterances, which are converted from the original SAA phonetic transcripts.

Stress-free visualization [3] was proposed to locate a new speaker, who is a central speaker in Figure 2, adequately in the archive speakers of WE. In this case, it is reasonable to consider that all the archive speakers have their own IPA transcripts while a new speaker does not. Training of SVR is done by using all the archive speakers and testing is done by predicting the accent gap between that new speaker and each of the archive speakers. Strictly speaking, the two modes investigated in [2] cannot be applied directly to this experimental setup, which is illustrated in Figure 4. In this new mode, a testing speaker is always a new speaker and is not included in the training data, and in this sense, accent gap prediction is done in a speaker-open way. However, accent gap is always predicted between a new speaker and a known archive speaker, who is used as an example. Here, the age and gender are also referred to. We have a strong reason why we adopted the non-linguistic factors of age and gender in Figure 2. It is interesting that a learner’s listening ability is sometimes overfitted to a specific speaker, i.e., his teacher. A learner can understand easily what his teacher says but understand poorly what other teachers say. Learners’ robustness of listening against what other teachers say. Learners’ robustness of listening against what other teachers say. Considering this fact, we introduced age and gender attributes to visualization.

3. ACCENT GAP PREDICTION FOR STRESS-FREE VISUALIZATION

As described in Section 1, our three previous works were conducted independently and, especially, technical assessment of our method of accent gap prediction and that of stress-free visualization was done separately. In this section, the former technique is assessed when it is combined with the latter one.

3.1. Three modes of automatic accent gap prediction

In [2], automatic accent gap prediction between two speakers was examined in two modes, which are a speaker-pair-open mode and a speaker-open mode. Difference between the two is illustrated in Figure 3. The task of accent gap prediction takes two speakers as input and predicts the accent gap between them. So, in the former mode, training speaker pairs and testing speaker pairs are not overlapped at all. However, training speakers are allowed to be found in testing speaker pairs and testing speakers can be found in training speaker pairs. Openness is guaranteed only in terms of speaker pairs. On the other hand, in a speaker-open mode, all the available speakers are divided into training speakers and testing speakers, and training speaker pairs are formed only from the training speakers. As for testing speaker pairs, only the testing speakers are used. In this mode, openness is guaranteed in terms of speakers.

When we can use \(N\) speakers for experiments, the number of speaker pairs is \(N(N-1)/2\). If we divide these pairs into two halves for training and testing, the number of training speaker pairs is \(N(N-1)/4\) in a speaker-pair-open mode. In the other mode, since the number of training speakers is \(N/2\), that of training speaker pairs is \(N(N-2)/8\), which is smaller than the half amount of training data in a speaker-pair-open mode.

Another large difference exists between the two modes, which is related to the regression mechanism of Support Vector Regression (SVR). In a speaker-pair-open mode, when speaker pair A-B is

| Table 1. Three kinds of correlation for accent gap prediction |
|-----------------|-----------------|-----------------|
| speaker-pair-open | speaker-open | phoneme-based |
| 0.87 | 0.50 | 0.76 |

Fig. 3. Two modes of speaker-pair-open and speaker-open

Fig. 4. A new mode of accent gap prediction

Fig. 5. Pronunciation structure extraction

Table 1. Three kinds of correlation for accent gap prediction
of the SAA paragraph (paragraph-based HMM is 3 to calculate the pronunciation structure. The number of states of a
Acoustic features used for paragraph-based HMMs were MFCC +
This UBM-HMM was then adapted to each of the 369 speakers.
Model (UBM). Then, it was adapted through MAP (Maximum A
Pronunciation structure was extracted from each of spoken para-
Figure 5 conceptually illustrates the process of pronunciation struc-
ture extraction from an input utterance [15]. The utterance, which is
feature vector sequence, is converted to a sequence of distributions.
From every pair of them, \(f \)-divergence-based distances are calcu-
lated. The resulting distance matrix is called speech structure or pro-
nunciation structure. Due to transform-invariance of \(f \)-divergence
[18], the structure was shown to be very independent of static and
non-linguistic variations [15]. This structural representation was al-
ready applied to speech recognition and synthesis [19, 20], pronunci-
ation scoring [21], pronunciation error detection [22], pronunciation
clustering [23], and dialect analysis [24]. In this paper, the Bhattacharyya distance is used as one of the \(f \)-differences.

3.2. Pronunciation structure analysis
Figure 5 conceptually illustrates the process of pronunciation struc-
ture extraction from an input utterance [15]. The utterance, which is
a feature vector sequence, is converted to a sequence of distributions.
From every pair of them, \(f \)-divergence-based distances are calcu-
lated. The resulting distance matrix is called speech structure or pro-
nunciation structure. Due to transform-invariance of \(f \)-divergence
(1)

3.4. Results and discussion
Using all the available speakers of the SAA corpus, 5-fold cross-
validation experiments were done in the new mode explained in
Section 3.1. Here, for each of the testing speakers, the accent gaps
between him/her and the training known speakers were predicted.
Using these gaps and their IPA-based reference gaps, the correla-
tion for that testing speaker was calculated. By conducting cross
validation, the averaged correlation of the predicted gaps to IPA-
Based gaps over all the testing speakers was obtained at 0.77. This is
surely lower than the performance in a speaker-pair-open mode but
still very comparable to that of phoneme-based accent gap calcula-
tion. Although the practical usefulness of the proposed technique for
learning WE is not discussed here, the performance obtained exper-
imentally may be able to be interpreted in the following way.
Phonemes are often explained as the minimum linguistic units
that ordinary listeners can perceive, and they are defined dependently
on the native language of those listeners. Similarly, phones with di-
acritics are said to be the minimum linguistic units that expert phon-
eticians can perceive and they are independent of languages that are
spoken. Phoneme-based accent gap calculation was done via DTW
between American English (AE) phonemic transcripts that were con-
verted from the SAA IPA phonetic transcripts. Logically speaking,
we can claim that AE phonemic transcripts can be regarded as results
of ordinary American listeners’ perception while IPA phonetic trans-
scripts are surely results of expert phoneticians’ perception. Since
the correlation of phoneme-based gaps to IPA-based gaps and that of
automatically predicted gaps to IPA-based gaps is very compara-
bale, our proposed method of predicting the accent gap for stress-free
visualization may be comparable to ordinary AE listeners’ perfor-
mance of prediction. Further, we can say that the performance shall
be improved by using additional features already examined in [2].

4. NOISE-ROBUST PREDICTION OF ACCENT GAPS
In the current section, we aim at improving noise-robustness of
accent gap prediction by introducing a technique of feature en-
hancement or noise suppression. Here, as Deep Neural Network
(DNN)-based feature enhancement, we examine Deep Denoising
Auto-Encoder (DDBA), originally proposed for noise-robust speech
recognition [28].
which are referred to as NU-2 henceforth. Their feature-enhanced version through DDAE is EU-2, where DDAE was trained only with computer noise and machine noise.

4.3. Results and discussion

Figure 9 and Figure 10 show the correlations in closed-noise environments (computer noise and machine noise) and those in open-noise environments (babble noise), respectively. Different from speech recognition applications, CALL applications are expected not to be used in environments with unexpected and heavy noise such as cars, trains, airplanes, streets, restaurants, etc. It is also highly expected that users will remove or turn off noise sources such as radios before using CALL applications. Therefore, performance assessment of DDAE in closed-noise environments can be said to be still practical. Clearly shown in Figure 9, DDAE can improve the correlation very effectively. If the SNR of input speech is larger than 5 [dB], the accent gap that could be obtained in a clean condition can be predicted with DDAE. The correlation at the SNR being 5 [dB] is 0.77 while that in a clean condition is 0.78.

In open-noise environments, where babble noise is used, we can say that DDAE is still very effective. It seems that the SNR of 10 [dB] is required to predict the accent gap of a clean condition. The correlation at the SNR being 10 [dB] is 0.75 while that in a clean condition is 0.78.

5. CONCLUSIONS

In many classes of English, utterances of a single accent are often accepted as model utterances. In Japan, General American (GA) is often used and in Europe, Received Pronunciation (RP) is widely used. In this situation, learners will regard mistakenly that type of English as the English and will expect that other English users will use that accent when they speak to those learners. Once the learners