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ABSTRACT 
 
Speech acoustics intrinsically vary due to linguistic and non- 
linguistic factors. The invariant structure extracted from a 
given utterance is one of the long-span acoustic representa-
tions, where acoustic variation caused by non-linguistic fac-
tors can be removed reasonably. It expresses spectral con-
trasts between acoustic events in an utterance. In previous 
studies, the invariant structure was leveraged in continuous 
speech recognition for reranking the N-best candidates hy-
pothesized by a traditional automatic speech recognition 
(ASR) system. Use of the invariant structure features for 
reranking showed good effects, however, the features were 
defined or labeled in a phonetic-context-independent way. 
In this paper, use of phonetic context to define invariant 
structure features is examined. The proposed method is test-
ed in two tasks of continuous digits speech recognition and 
large vocabulary continuous speech recognition (LVCSR). 
The performances are improved relatively by 4.7% and 
1.2%, respectively. 
 

Index Terms— Phonetic context, Invariant structure, 
Continuous digits speech recognition, LVCSR, N-best can-
didates reranking 
 

1. INTRODUCTION 
 
The speech signal inevitably varies according to non-
linguistic acoustic factors, such as age, gender, microphone, 
background noise, and so on. These variations often degrade 
the performance of ASR. 

Recently, a method of extracting the invariant structure 
from an utterance was proposed, where speech acoustics are 
represented without effect of variations by these non-
linguistic factors [1]. The invariant structure models spectral 
contrast between acoustic events, e.g. phonemes. This ap-
proach was applied both to isolated word recognition [2][3], 
and N-best candidates reranking for continuous speech 
recognition [4][5]. It showed robustness and good perfor-
mance on these tasks. 

Generally speaking, it has been shown in many studies 
that phonetic-context-dependent models resulted in better 
performance in ASR than independent models. However, in 
our previous studies, the invariant structures were merely 

 
 

Fig. 1. Invariant structure 
 

extracted in a phonetic-context-independent way. Therefore 
in this study, the effect of using phonetic context in defining 
the invariant structure is studied. 

In this paper, the method of extracting phonetic-
context-dependent invariant structure is proposed and tested 
in reranking the candidates hypothesized by a baseline ASR 
engine. In chapter 2, related works about invariant structure 
are explained. In chapter 3, our proposal of phonetic-
context-dependent speech structure is introduced and, in 
chapter 4, our proposed method is examined in the tasks of 
continuous digits speech recognition and LVCSR and the 
results are discussed. Finally in chapter 5, this paper is con-
cluded with future directions. 
 

2. RELATED WORKS 
 
2.1. Invariant structure 
 
Voices of different speakers show different timbre because 
they have different vocal tract lengths and shapes. By using 
a mathematical model of voice mapping or transformation to 
characterize variations of the vocal tract length and shape, 
voices from one speaker can be converted into another 
speaker's. This fact indicates that if we can find any trans-
form-invariant features, they can be used as robust features.  

A necessary and sufficient condition for a feature to be 
invariant for any continuous and convertible transform is  
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Fig. 2. Reranking framework 
 

that the feature is represented by f-divergence [6]. f-
divergence between two distributions is a family of diver-
gences such as Bhattaryya distance and KL divergence. 

Consider a feature space 𝑿 and a pattern 𝑺. Suppose 𝑺 
has 𝑀  events {𝑠𝑖}𝑖=1𝑀 . Each is described as a distribution 
𝑠𝑖(𝑥) in the feature space 𝑿. Assume there is an invertible 
transformation f : 𝑿 → 𝑿′, which transforms feature space 𝑿 
into a new feature space 𝑿′. In this way, 𝑀 events {𝑠𝑖}𝑖=1𝑀  in 
𝑿 are mapped into {𝑠𝑖′}𝑖=1𝑀  in 𝑿′. Here, the f-divergence be-
tween events 𝑠𝑗  and 𝑠𝑘  (1 ≤ 𝑗＜𝑘 ≤ 𝑀) is invariant to any 
arbitrary invertible transform f. Therefore, it is equal to the 
f-divergence between 𝑠𝑗′ and 𝑠𝑘′ . 

Fig.1 shows two invariant structures which are extract-
ed from two utterances of the same linguistic content that 
were spoken by two different speakers. By calculating all 
the f-divergences between any pair of events (phonemes) in 
a pattern, we can obtain a structure. Each pattern consists of 
5 events, so there are a total of 10 edges in each structure.  
 
2.2. Reranking framework 
 
In our previous study, invariant structure was leveraged in 
reranking the candidates hypothesized by a baseline ASR 
system [4][5]. The framework is shown in Fig.2. There are 
four steps in this process. First, a baseline ASR system gen-
erates N candidates {𝑦𝑖} from acoustic input x. Second, 
invariant structure features are calculated according to pho-
neme alignment of each candidate. Third, the structure score 
is calculated according to the models trained by using the 
invariant structure features of training data. In the final step, 
these candidates are reranked according to the new scores 
obtained by combining the structure score and the ASR 
score. The candidate of the highest score will be chosen as  

Input: Training samples �𝑥𝑖 , 𝑦𝑖 , 𝑦𝑖� for 𝑖 = 1 … 𝐼 
Initialization: 𝛼0𝐼 = 0 
1: for t = 1 … T do 
2:     𝛼𝑡0 = 𝛼𝑡−1𝐼  
3:     for i = 1 … I do 
4:         if 𝛼𝑡𝑖−1 ∙ 𝚽(𝑥𝑖 ,𝑦𝑖) + 𝜙0(𝑥𝑖 ,𝑦𝑖) 
                  > 𝛼𝑡𝑖−1 ∙ 𝚽 �𝑥𝑖 ,𝑦𝑖� + 𝜙0 �𝑥𝑖 ,𝑦𝑖� then 

5:            𝛼𝑡𝑖 = 𝛼𝑡𝑖−1 + 𝜆 �𝚽�𝑥𝑖 , 𝑦𝑖� − 𝚽(𝑥𝑖 , 𝑦𝑖)� 
Output:   𝛼 = ∑ 𝛼𝑖𝑡 𝐼𝑇⁄𝑖,𝑡  

 
Fig.3. A variant of the averaged perceptron algorithm 

 
the best candidate. Through this approach, a better perfor-
mance than baseline ASR system was acquired. 
 
2.3. Discriminative reranking with f-div. edge models 
 
For discriminative reranking of multiple candidates generat-
ed from a speech recognizer, a d-dimensional feature vector 
Φ(𝑥,𝑦) is often used, where 𝑥 is acoustic input and 𝑦 is a 
specific candidate. Φ(𝑥,𝑦) characterizes one aspect of that 
candidate. For example, in LVCSR, the i-th dimension of 
Φ(𝑥,𝑦) is the number of word 𝑤𝑖  (1 ≤ 𝑖 ≤ 𝑑, where d is the 
size of the vocabulary) in 𝑦. 

In our previous study [7], phoneme-to-phoneme (p-to-
p) edges in candidates were applied instead of words. Here, 
by using training data, for each kind of p-to-p edges, its in-
stances (f-div. values) were clustered into N classes. Using 
f-div.-dependent classes for each kind of p-to-p, the follow-
ing feature Φ(𝑥,𝑦)  was derived for acoustic input 𝑥  and 
candidate 𝑦, where class identification was done easily by 
using thresholds. In equation (1), 𝑒𝑗,𝑘  (1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑃)  is 
edge kind, which has 𝑁 classes. As a result, the Φ(𝑥,𝑦) was 
formed as follows.  
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The averaged perceptron algorithm was applied for 
reranking candidates discriminatively using Φ(𝑥,𝑦). In the 
algorithm (See Fig.3), weighting vector 𝛼 for Φ(𝑥,𝑦), the i-
th element of which can be interpreted as dgree of im-
portance of the i-th element of  Φ(𝑥,𝑦), is trained so that the 
lowest-WER candidate 𝑦 will show higher integrated new 
score of 𝛼 ∙ Φ(𝑥,𝑦) + 𝜙0(𝑥,𝑦)  and vice versa. 𝛼 ∙ Φ(𝑥,𝑦) 
is the structure score, and 𝜙0(𝑥,𝑦)  is the log likelihood 
caculated by a traditional ASR system. In Fig.3, 𝑥𝑖 is the i-th 
speech in training data. And 𝑦𝑖  and 𝑦𝑖  are its highest-WER  
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Table 1 Experiment condition for Japanese continuous digits 

Experiment monophone triphone 

Utterances 
1 to 11 continuous  

Japanese digits 
Training data for 
HMM 

27.5 hrs/667 spks/ 
17316 utters 

Training data for av-
eraged perceptron and 
f-div. thresholds  

the same above 

Testing data 
1.5 hrs/100 spks/ 

7382 utters 
# of HMM states 500 
# of HMM Gaussians 15000 
Language model Digit-based unigram 
# of phone classes (P) 18 37 
# of phone pairs  171 703 

Table 2 Experiment condition for Japanese LVCSR 

Experiment monophone triphone 
Utterances Japanese Dictation task 
Training data for 
HMM 

352 hrs / 1325 spks / 
196475 utters 

Training data for av-
eraged perceptron and 
f-div. thresholds 

the same above 

Testing data 
1.5 hrs / 20 spks / 

600 utters 
# of HMM states 5000 
# of HMM Gaussians 150000 
Language Model Word 3-gram [9] 
# of phone classes (P) 57 92 
# of phone pairs  1653 4278 

 
candidate and the lowest-WER candidate among the N-best 
candidates, respectively. t is the sequence number of itera-
tive training. 𝜆 is a parameter of learning rate. 

When the feature is applied to the LVCSR task, lan-
guage model scores are also added to the feature.  
 

3. PROPOSED APPROACH 
 
Although our method proposed in [7] resulted in perfor-
mance improvement from that of the baseline ASR system, 
for calculating the invariant structure, an edge between two 
phonemes was labeled in a phonetic-context-independent 
way. In the early studies of traditional ASR models, it was 
well known that phonetic-context-dependent models, e.g. 
triphone models, resulted in better recognition performance 
[8]. Therefore, context-dependent definition of edge labels 
is expected to improve the performance.  

In our previous study [7], an edge was labeled by using 
the names of phonemes existing at the two ends. In that case, 
monophone labels were applied, e.g. /ah/–/m/. However, in 

the current study, the names of triphones are applied for 
defining p-to-p edges instead, e.g. /f-aa+dh/–/aa-dh+ax/.  
We will examine experimentally whether use of context-
dependent labels will increase the effectiveness of the 
framework described in chapters 2.2 and 2.3.  

The problem in the proposed method is that it is not 
practical to apply all triphone classes because their number 
is too huge. This will lead to data sparseness and reliable 
optimization of 𝛼  becomes difficult. Therefore, merging 
phonetic context of the triphones is needed to ensure both 
enough information of phonetic context and also an ac-
ceptable number of triphone classes. In this paper, super-
vised merging of phonetic contexts is examined only in the 
task of LVCSR. 

For the continuous digits task, as labels of triphones, we 
used intra-word triphones, not inter-word triphones. In this 
task, the vocabulary size is small and the number of kinds of 
triphones found in utterances is small. Merging phonetic 
context in defining triphones is not needed. 

For the LVCSR task, however, since the number of 
kinds of triphones found in utterances is very large, context 
merging is required. A rule-based tentative strategy of pho-
netic context merging is examined. Because it is supposed 
that vowels are more likely to be context dependent than 
consonants, triphone labels are introduced only to vowels 
and monohpone labels are used for consonants. This means 
that, for consonant-to-consonant edges, their names (labels) 
are the same as those used in our previous study [7]. Phonet-
ic context merging in triphones that have a vowel as central 
phoneme is done in the following way. The context is classi-
fied into three cases of consonants (con), silence (sil), and 
vowels (vow); [sil|vow|con] – vow + [sil|vow|con]. So, a 
monohpone of a specific type of vowel comes to have 9 
triphone classes. Further, it should be noted that, different 
from the triphone definition used in the task of continuous 
digits recognition, not intra-word triphones but inter-word 
triphones are used because the inter-word context provides 
important information in the task of LVCSR.  
 

4. EXPERIMENTS AND RESULTS 
 
4.1. Experiment setup 
 
Experiments of Japanese continuous digits recognition and 
Japanese LVCSR are conducted with the proposed method. 
The experimental conditions are shown in Table 1 and Table 
2. In this experiment, an ASR engine, which was proposed 
in [10] is used as baseline recognizer, which generates 10-
best candidates for averaged perceptron learning and 
reranking.  

For extracting the structure, 13-dimensional PLP se-
quences were converted into distribution sequence by refer-
ring to phoneme alignment. From the frames corresponding 
to the central state of each phoneme HMM, their mean vec-
tor is calculated but the only and global diagonal variance 
matrix is shared and used for f-div. calculation. 



 
(a) monophone condition 

 
(b) intra-word triphone condition 

 
Fig.4. Performance of WER on Japanese continuous digits 
speech task 

 
4.2. Results and discussion 
 
Word Error Rate (WER) is used to evaluate the proposed 
method in continuous digits task. Fig.4(a) and Fig.4(b) show 
experimental results when applying monophone-based and 
triphone-based invariant structures, respectively. 

On the other hand, Character Error Rate (CER) is used 
for evaluation in LVCSR. Fig.5(a) and Fig.5(b) show the 
results obtained in the two experiments. In each of the fig-
ures, different values of learning rate 𝜆 are tested. 

As in the figures, the triphone method provides per-
formance improvement. In Fig.4(b), the best performance 
appears at 4th iteration when 𝜆 = 0.002. In this case, 4.7% 
WER reduction from the baseline performance was obtained. 
In Fig.5(b), the best performance appears at 4th iteration 
when 𝜆 = 0.001 . Here, 1.2% CER reduction was found 
from the baseline approach. 

In experimental results, recognition performance degra-
dation occurred while 𝜆 or t reached a certain high value. 
This is considered to be because learning of parameter 𝛼 
causes overfitting. However, the triphone-based invariant 
structure methods performed well with relatively larger 𝜆 
than the monophone based methods. It is because the larger 
number of edge kinds results in smaller number of samples 
for each kind. And this requires larger learning amount by  

 
(a) monophone condition 

 
(b) rule-based triphone condition 

 
Fig.5. Performance of CER on Japanese LVCSR task 

 
increasing the learning rate 𝜆. Therefore, finding appropriate 
𝜆 and t is important for the optimum performance. 
 

5. CONCLUSION 
 
The invariant structure is extracted by using f-div.-based 
speech contrasts. In our previous work, each speech edge 
was labeled by using the monophone labels at the two ends. 
In this study, however, triphone labels are introduced to 
name the invariant speech edges. Performance improvement 
is acquired both in continuous digits speech recognition task 
and LVCSR task. This proves that phonetic context infor-
mation is able to improve the effectiveness of invariant 
structure features. 

In LVCSR task, in order to suppress the number of 
triphone classes used to define the invariant structure, 
triphone context are tentatively merged according to a rule 
based strategy. However, it is not likely to be optimal. We 
expect that more sophisticated merging will show better 
performance. 
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