
AUDIO-VISUAL FEATURE INTEGRATION BASED ON PIECEWISE LINEAR
TRANSFORMATION FOR NOISE ROBUST AUTOMATIC SPEECH RECOGNITION

Yosuke Kashiwagi1, Masayuki Suzuki2, Nobuaki Minematsu2, Keikichi Hirose1

1Graduate School of Information Science and Technology,
2Graduate School of Engineering,
The University of Tokyo, Japan

{kashiwagi, suzuki, mine, hirose}@gavo.t.u-tokyo.ac.jp

ABSTRACT
Multimodal speech recognition is a promising approach

to realize noise robust automatic speech recognition (ASR),
and is currently gathering the attention of many researchers.
Multimodal ASR utilizes not only audio features, which are
sensitive to background noises, but also non-audio features
such as lip shapes to achieve noise robustness. Although var-
ious methods have been proposed to integrate audio-visual
features, there are still continuing discussions on how the vest
integration of audio and visual features is realized. Weights
of audio and visual features should be decided according to
the noise features and levels: in general, larger weights to vi-
sual features when the noise level is low and vice versa, but
how it can be controlled? In this paper, we propose a method
based on piecewise linear transformation in feature integra-
tion. In contrast to other feature integration methods, our pro-
posed method can appropriately change the weight depending
on a state of an observed noisy feature, which has informa-
tion both on uttered phonemes and environmental noise. Ex-
periments on noisy speech recognition are conducted follow-
ing to CENSREC-1-AV, and word error reduction rate around
24% is realized in average as compared to a decision fusion
method.

Index Terms— Feature enhancement, Multimodal ASR,
SPLICE, noise robustness

1. INTRODUCTION

Although Automatic Speech Recognition achieves high
performance in clean environments, recognition rates sharply
degrade in low SNR conditions. To deal with this problem,
a variety of methods have been proposed. Among them,
conversion of noisy speech features to clean speech fea-
tures, (henceforth, feature enhancement) attains researchers’
concern, since several effective techniques have been de-
veloped recently, such as Stereo-based Piecewise Linear
Compensation for Environments (SPLICE) [1], Vector Taylor
Series(VTS) based compensation [2].

When supplemental information such as lip movements,
EMG signals, is available during utterances, it can be used
to facilitate speech recognition. For instance, voice activ-
ity detection from visual information can largely improve the
recognition performances [3, 4]. These multimodal ASR ap-
proaches can be broadly categorized into two types: decision
fusion [5–8] and feature fusion [8, 9] methods. Decision fu-

sion methods combine outputs from single-modality HMM
classifiers (audio and visual ones) to recognize speech with
visual information. Here, a weighted sum of class conditional
log-likelihoods from the two classifiers is used. On the other
hand, feature fusion methods combine audio and visual fea-
tures in feature domain. And HMM classifiers of the com-
bined feature are used to recognize speech. In this paper, we
focus on the feature fusion.

An important issue of feature fusion methods is weighting
of audio and visual features. We should appropriately decide
the weights of these features using various kinds of informa-
tion such as the type of environmental noises and phonemes.
To this end, we propose a new feature fusion method based
on piecewise linear transformation. We divide the noisy au-
dio feature space into many states using Gaussian Mixture
Model (GMM), and estimate an optimal linear transformation
for joint audio-visual features for each state so that the audio-
visual features are appropriately weighted depending on the
states. This method is inspired by the well-known SPLICE
method [1], which utilizes GMM of noisy audio feature and
piecewise linear transformation. A difference from SPLICE
is utilizing visual information for piecewise linear transfor-
mation.

In the following sections, multimodal speech recognition
methods are first explained in section 2, followed by a detailed
description of our proposal in section 3. Section 4 shows ex-
perimental results, and section 5 concludes the paper.

2. MULTIMODAL SPEECH RECOGNITION

Due to distortions of speech features by noise, the perfor-
mance of ASR often degrades in low SNR conditions. Sup-
plemental features other than audio ones can solve this situ-
ation if these features are less influenced by the noise. This
type of ASR is called multimodal ASR, which often uses vi-
sual features obtainable during utterances, such as lip shapes,
facial expressions, and so on.

When using visual features, the main question is how au-
dio and visual features should be incorporated in the recog-
nition process. As mentioned in Section 1, audio and visual
information can be integrated in two ways for ASR: feature
fusion and decision fusion.
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2.1. Feature fusion

Feature fusion methods generate concatenated vectors
from audio feature vectors and visual feature vectors, and
train a “multi-modal” HMM classifier. The feature fusion
is advantageous in that it can utilize the correlation between
multiple features from different modalities which helps in bet-
ter task accomplishment. Also, it requires only one learning
phase on the combined feature vector. However, increasing
feature dimension influence the performance of the feature
fusion. To reduce dimensionality of concatenated vector,
principle component analysis (PCA) or linear discriminant
analysis (LDA) is often applied.

2.2. Decision fusion

In contrast, decision fusion methods combine log-likelihoods
from audio and vision classifiers. The methods independently
model audio-only and visual-only expressions, then combines
these recognition results at the end. When two audio and vi-
sual HMM classifiers are used, the following multi-stream
HMM framework can be adopted:

Lav,t = λaLa,t + λvLv,t

where λa + λv = 1, λa,λv ≥ 0. (1)

La,t and Lv,t are log-likelihoods of audio and visual HMM
classifiers for time t, respectively, and Lav,t is the integrated
one. Since the two outputs are used directly for fusion, good
temporal alignment between the two feature streams (audio
and visual) is not guaranteed. To solve this problem, the
forced alignment on the audio models is often used to train
visual HMMs.

3. PROPOSED METHOD

In the feature fusion method, PCA or LDA are often used
to reduce the dimensionality and to weight the audio and vi-
sual features. However, its weighting may not appropriate be-
cause all input data are transformed using a common matrix.
The weight should be changed depending on noise environ-
ments, phoneme contents, and so on.

To solve the problem, we introduce a new feature fusion
method, which combines audio and image information appro-
priately depending on observed audio features. We estimate
audio features of clean speech from features of observed au-
dio and visual ones. In this framework, we can interpret en-
hanced audio features as the joint audio-visual features after
dimension reduction.

We propose a method to estimate a clean feature x̂ from a
noisy feature y and a visual feature i using a piecewise linear
transformation as:

x̂ =
∑

k

P (k|y)Akm
′, (2)

where m′ = [1,y", i"]" is an augmented joint vector of
audio and visual features. As for visual features i, appear-
ance features with eigen-face [11] are adopted. Assuming

that y follows a Gaussian mixture of the noisy speech cep-
stra, P (k|y) can be represented in the following way:

P (y|k) = N (y;µk,Σk),

P (y) =
∑

k

πkN (y;µk,Σk),

P (k|y) =
πkN (y;µk,Σk)∑
k πkN (y;µk,Σk)

, (3)

where πk, µk, and Σk are weight, mean, and covariance ma-
trix of k-th element of the GMM, respectively. We train these
parameters using training data in advance. Transformation
matrices {Ak} are obtained using the following weighted
minimum mean square error criterion:

{Ak} = argmin
{Āk}

∑

l

∑

k

P (k|yl)‖xl − Ākm
′‖2, (4)

where xl and yl are time-synchronized features, and l is the
index of training data. This equation can be solved analyti-
cally as follows:

Âk = XRkM
′"(M ′RkM

′")−1, (5)

where Rk is a diagonal matirx which has diagonal com-
ponents [P (k|y1), P (k|y2)], . . . , P (k|yL)]]. M ′ represents
aligned m′ vectors.

3.1. Comparison with SPLICE

SPLICE is a speech enhancement method, which esti-
mates features of clean speech x from those of noisy speech
y with piecewise linear transformations as follows:

x̂ =
∑

k

P (k|y)Ak

[
1
y

]
, (6)

where x̂ is the estimated feature, and a probability density
function of y is assumed to be a GMM. Therefore, our pro-
posed method is very similar to SPLICE. The difference be-
tween these two methods is the input of linear transformation
part. While SPLICE only uses audio features, our proposed
method uses the joint features of audio and visual ones.

4. EXPERIMENTS

Experiments are conducted for the CENSREC-1-AV [12]
task, where Japanese digits are recognized in additive noise
conditions. Clean speech data are selected from CENSREC-
1-AV, and noisy speech data are created by adding noises in-
cluded in noisex92 [13] in 5 SNR levels from 20 dB to 0 dB.
Tables 1 and 2 summarize audio and visual data used for the
experiments. Noisy visual data are not used. Table 3 shows
audio and visual features used for the experiments. Audio fea-
tures are 13 dimensional mel-frequency cepstrum coefficients
and their ∆ and ∆2 parameters, totally 39 dimensions. Visual
features are obtained by conducing PCA on pixel color data
obtained by raster scan: 10 dimensional for each color result-
ing in 30 dimensional for RGB. We linearly interpolated the
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Table 1. Audio data.
Samplling rate 16kHz
Auantization bits 16 bit/sample

noisyx-92
5 types

Audio noise (babble,factory1,
factory2,car (Volvo),white)
5 SNR levels
(20 dB to 0dB)

Table 2. Visual data.
Frame rate 29.97Hz
Pixsel 24 bit color
Data size 81 pixel width × 55 pixel height
Visual noise none (clean)

visual features so that visual features are frame-synchronized
with audio features.

Word HMMs for speech recognition are trained in two
cases: using only clean speech data (henceforth, clean HMM)
and using clean speech data and noisy speech data with 5
types of noises in 5 SNR levels (henceforth, multi-condition
HMM) together as indicated in Table 4. Clean and noisy
speech data in Table 4 are also used for training linear trans-
formation matrices. Testing is conducted using utterances by
different speakers. The proposed method is compared with
three baseline methods: no enhancement, conventional fea-
ture fusion with dimension reduction from 69 to 39 by PCA,
and conventional decision fusion which uses the best integra-
tion weight among 0.0,0.2,0.4,0.6,0.8,1.0. In decision fusion,
good temporal alignment between audio and visual streams is
not guaranteed. To reduce the effect of misalignment, visual
HMMs are forced-aligned to audio HMMs during training. In
particular, the audio and visual model parameters at each state
are used for audio-visual HMMs without any changes and the
transition matrices of audio HMMs are also used without any
changes. Comparison is conducted also with conventional
SPLICE to show the effects of using visual information. All
the recognition experiments are conducted with CMN (Cep-
stral Mean Normalization).

Figure 1 compares the word error rates averaged over all
the noise types and levels, when clean condition HMMs and
multi-condition HMMs are used. For all the cases, recogni-
tions are conducted using HMMs with 39 dimensional fea-
ture vectors. It is clear from the figure that, among the base-
line methods (no enhancement, feature fusion, decision fu-
sion), the decision fusion performs the best. Our proposed
method surpasses the best method (conventional decision fu-
sion), achieving error reduction rates of 25% in clean HMMs
and 24% in multi-condition HMMs. Compared with SPLICE,
our proposed method also achieves improvements in word er-
ror rates. This shows the effectiveness of using visual features
for feature enhancement based on a piecewise linear transfor-
mation. Figures 2–6 shows word error rates (averaged over all
noise levels) in each noise type. In almost all noise types, our
proposed method realized the lowest word error rates. Only
one exception is car noise, where the decision fusion performs
better than our method. This is because the word error rate is
low enouth even for non-enhancement case. Although word

Table 3. Audio and visual features.
Audio MFCC+∆+∆2

Visual Raster scan + PCA
(10 × 3 (RGB) = 30 dimensions)

Table 4. Data sets for training and testing.
clean multi Trans. Test
HMM HMM

Speaker male 22 male 25
female 20 female 26
clean clean

Audio data noisyx-92
(babble, factory1,
factory2, car (Volvo), white)
20dB 15dB 10dB 5dB 0dB

visual data clean color (RGB)

error rates are not shown for each noise level, the results show
similar tendencies.

5. CONCLUSION

In this paper, a multimodal ASR method is proposed
based on piecewise linear transformation. We use noisy
audio-visual joint features and clean audio features for train-
ing the transformation. In the CENSREC-1-AV task, we
achieved 25% and 24% error reduction rates as compared
with conventional decision fusion method, which performs
the best among three baseline methods. Moreover, our pro-
posed method performs better than SPLICE which only uses
audio features for piecewise linear transformation. Effec-
tiveness of using visual features for feature enhancement is
proved through the experiments.
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Fig. 1. Word error rates for clean HMMs and
multi-condition HMMs.
The results are averaged over all noise types and levels.

Fig. 2. Word error rates for clean HMMs and
multi-condition HMMs in babble noise condition.
The results are averaged over all noise levels.

Fig. 3. Word error rates for clean HMMs and
multi-condition HMMs in factory1 noise.
The results are averaged over all noise levels.

Fig. 4. Word error rates for clean HMMs and
multi-condition HMMs in factory2 noise.
The results are averaged over all noise levels.

Fig. 5. Word error rates for clean HMMs and
multi-condition HMMs in car noise (Volvo noise).
The results are averaged over all noise levels.

Fig. 6. Word error rates for clean HMMs and
multi-condition HMMs in white noise.
The results are averaged over all noise levels.
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