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Abstract

One of the biggest difficulties in automatic speech recognition
(ASR) is how to deal with variations of speech signals caused
by non-linguistic information, such as age, gender, etc. Vari-
ous methods have been proposed to compensate for the vari-
ations and one of them is speech structure [1]. Speech struc-
ture, which extracts only contrastive features and discards
absolute features, is proved to be transform-invariant math-
ematically and to be very robust with the non-linguistic vari-
ations experimentally [2]. Although the conventional speech
structure extracts local and distant contrastive features, it did
not extract dynamic features explicitly which are supposed
to exist in the contrastive features. In this paper, we refor-
mulate speech structure based on trajectory HMM and derive
trajectory structure (TSR), in which dynamic and contrastive
features can be defined and used in ASR. We carry out an
experiment of n-best rescoring of isolated word recognition
using trajectory structure and obtain 28.5% relative decrease
in word error rate.

1. Introduction

Speech signals contain various kinds of information, such
as linguistic messages, speaking styles, speaker identity,
recording conditions, etc. When one tries to get some spe-
cific kinds of information from speech signals, one wants to
extract the acoustic features that represent only the target in-
formation and are independent of the other kinds of informa-
tion. ASR systems, which convert speech signals to texts,
need the acoustic features that convey linguistic information
only. However, mel-cepstrum-based features, which are most
commonly used, are not independent at all of non-linguistic
information. Therefore, researchers have developed various
methods to compensate for non-linguistic variation in speech
features. These methods are, for example, feature normal-
ization, noise suppression, speech enhancement, and model
adaptation. However these methods are reported to be inef-
fective in some applications, such as children’s speech recog-
nition [2].

To solve the problem, a method was proposed [1] to extract
the acoustic features that are mathematically independent of
the non-linguistic variations. The proposed representation is
called speech structure. In the proposed representation, first,
the speech feature sequence is converted to a sequence of dis-

tributions, from each pair of which a distance is calculated us-
ing f -divergence . The obtained distance matrix is adopted as
a speech representation of the input utterance. f -divergence
is mathematically proved to be invariant with any continuous
and differentiable transformation, as which any non-linguistic
speech variation can be characterized. These facts indicate
that the f -divergence distance matrix can be regarded as in-
variant representation with non-linguistic variations. Speech
structure has been applied to several applications and showed
good results especially for pronunciation assessment where
children’s speech sometimes has to be compared to adult
teachers’ speech [3].

However, the computational implementation of the speech
structure is still immature and can be sophisticated in some
aspects. Since the speech structure is a f -divergence distance
matrix among the distributions, temporal dynamics, which
may be actually observed in a single distribution, has to be
ignored completely. In this paper, we firstly derive a speech
structure not based on the classical HMM but based on the
trajectory HMM. Using the trajectory HMM, we can define
a distance vector at each time. Next, we derive dynamic and
contrastive features using first and second derivatives of dis-
tance vectors. We carry out an experiment of isolated word
recognition and obtained 28.5% relative reduction in word er-
ror rate by using n-best rescoring based on trajectory struc-
tures.

2. Speech Structure Model

In speech science and technology, phonemic identity is of-
ten characterized as spectrum envelope and it is represented
as a point in a cepstrum space. However, non-linguistic fac-
tors can change the coordinate values of the point easily. On
the contrary, in a speech structure, only distances (contrasts)
between two distributions, which often refer to phonemes, are
calculated and absolute features are discarded instead. We
use Bhattacharyya distance (BD), which is one kind of f -
divergence , because it was found to work well by previous
studies.

BD(pi, pj) = − log
∫ √

pi(x)pj(x)dx (1)

In ASR using speech structure, firstly we train an HMM with
N states from an input utterance and obtain N output distri-
butions, and secondly we calculate BDs between each pair,
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Figure 1: A feature sequence, its speech structure, and its trajectory structure

and finally adopt them as the features of the utterance.

3. Trajectory Structure Model

While in the conventional speech structure we trained an
HMM with N states and obtained

(N
2

)
BDes between each

pair of the N state distributions, in the trajectory structure
model, we assume that each time frame has its own unique
distribution. In other words, we can have a coarsely quan-
tized distribution sequence from a classical HMM and a finely
quantized sequence from a trajectory HMM. Using these two
distribution sequences, we can calculate a BD between a fine
distribution and a coarse distribution. Fig.1 shows an exam-
ple of feature sequence, its speech structure, and its trajec-
tory structure. In the standard approach, a feature sequence
[x1,x2, · · · , xT ] itself is often used as a representation of the
input utterance (Fig.1(a)). In the conventional speech struc-
ture, we train an HMM with N states, calculate BDes from
every pair of the states, and obtain a sequence of distance vec-
tor [s1, s1, · · · , sN ]. sn is a distance vector of the n-th state,

sn =
[
BD(P (n)

state, P
(1)
state), BD(P (n)

state, P
(2)
state),

· · · , BD(P (n)
state, P

(N)
state)

]T
. (2)

Where P (n)
state is the output distribution of the n-th state. Be-

cause Bhattacharyya distance is symmetric, we just pick up(N
2

)
distances out of the N2 distances. These

(N
2

)
distances

are used as a representation of the input utterance (Fig.1(b)).
In trajectory structure model, after we train a classical

HMM with N states, it is used to derive frame-dependent
distributions. Then, we obtain a sequence of distributions[
P (1)

frame(x), P (2)
frame(x), · · · , P (T )

frame(x)
]
, where T is the

total number of frames and P (t)
frame(x) is the distribution of

the t-th frame. Each P (t)
frame(x) is calculated from trajectory

HMM [4], which derives the temporally changing distribu-
tions of static features by imposing the explicit relationship
between static features and dynamic features. The detailed
procedure to obtain P (t)

frame(x) is described later. By using
T fine distributions and N coarse distributions, at time t, we
calculate a distance vector whose i-th element is BD between
the t-th fine distribution and the i-th coarse distribution. Since

this vector can be obtained at each time, we have T distance
vectors with their dimension being N . (Fig.1(c)). The dis-
tance vector at time t, dt, is given by

dt =
[
BD(P (t)

frame, P
(1)
state), BD(P (t)

frame, P
(2)
state),

· · · , BD(P (t)
frame, P

(N)
state)

]T
. (3)

Here, a sequence of the distance vectors [d1,d2, · · · , dT ] is
used as a representation of the input utterance. In addition,
since the distance vector is obtained at each time, we can cal-
culate its ∆ and ∆2 features and concatenate them and dt.

So far, we have introduced the basic procedure to de-
rive TSR model. In the rest of this section, we introduce
the detailed procedure to derive P (t)

frame(x) based on trajec-
tory HMM. Let x denote a concatenation of an input fea-
ture sequence

[
xT

1 , xT
2 , · · · , xT

T

]T, each xt is a concatena-
tion of a static feature vector and its ∆ and ∆2 features,[
cT

t ,∆cT
t , ∆cT

t

]T. Let M denote the dimension of ct. ∆ and
∆2 features are defined as weighted sums of adjacent static
feature vector as follows.

∆ct =
L∑

τ=−L

w(1)(τ)ct+τ , (4)

∆2ct =
L∑

τ=−L

w(2)(τ)ct+τ , (5)

where L is the length of window to calculate dynamic fea-
tures, and w(1)(τ) and w(2)(τ) are coefficients for ct+τ . Be-
cause each xt is calculated by an linear transformation of ct,
there exists a matrix W such that

x = Wc, (6)

where c is a concatenation of a static feature sequence[
cT
1 , cT

2 , · · · , cT
T

]T. Because the dimension of c is MT and
that of x is 3MT , W is a 3MT × MT matrix. When we as-
sume this feature sequence is generated by an HMM that has
N states each of which has a single Gaussian as output dis-
tribution, the probability of x given alignment q and HMM
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Figure 3: 1st-order mel-cepstrum of obsevation, mean of
trained HMM, and trajectory derived from the HMM.

acceleration. Because each xt is calculated by an linear trans-
formation of ct, there exists a matrix W such that

x = Wc (5)

where c is a concatenation of a static feature sequence[
cT
1 , cT

2 , · · · , cT
T

]T. By the way, when we assume this fea-
ture sequence is generated by an HMM that has N states and
the output distributions of single Gaussian, the probability of
x given an alignment q and a HMM parmeter λ, P (x|q,λ) is
calcualted as follows.

P (x| q,λ) =
T∏

t=1

N (xt| µqt ,Σqtx) (6)

= N (x|µq, Σq) (7)

where qt is the index of the state to which t-th time frame
belongs, and µq and Σq are concatenations of sequences µqt

and Σqt respectively.

µq =
[
µT

q1
, µT

q2
, · · · , µT

qT

]T
(8)

Σq = diag [Σq1 ,Σq2 , · · · , ΣqT ] (9)

Because x satisfies Eq.5, there exist a mean vector c̄q and a
covariance matrix Pq such that

P (x|q,λ) = N (Wc| µq, Σq) (10)
= Kq N (c| c̄q, Pq) (11)

where Kq is a constant that depends on an alignment q.
4. N-best Rescoring of Isolated Word Recognition Based
on TSR Model

5. Conclusions

Dynamic features have not been used yet in speech recog-
nition using speech structure. We derived structural dynamic

features and proposed a method to use them in word recog-
nition. Experimental results showed the effectiveness of the
proposed method.
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Figure 2: Observations of 1st-order mel-cepstrum, means of
the original HMM, and means of the frame-dependent HMM.

parameter λ, P (x|q, λ) is calculated as follows.

P (x| q,λ) =
T∏

t=1

N (xt| µqt ,Σqt) (7)

= N (x|µq, Σq) (8)

where qt is the index of the state to which ct belongs. µq and
Σq are concatenations of sequences µqt and Σqt respectively.

µq =
[
µT

q1
, µT

q2
, · · · , µT

qT

]T
(9)

Σq = diag [Σq1 ,Σq2 , · · · , ΣqT ] (10)

Because x satisfies Eq.6, there exist a mean vector c̄q and a
covariance matrix Pq such that

P (x| q,λ) = N (Wc| µq,Σq) (11)
= Kq N (c| c̄q, Pq) (12)

where Kq is a constant that depends on alignment q. An
actual example of c, µq , and c̄q is shown in Fig.2. The co-
variance matrix Pq is not a diagonal matrix, but still a band
matrix, in which only diagonal elements and their adjacent
elements are non-zero. To obtain an independent distribution
for each frame, we approximate Pq as a block diagonal ma-
trix as follows

Pq ≈ diag
[
p(1)

q , p(2)
q , · · · , p(T )

q

]
. (13)

Finally, we obtain an independent distribution for each frame.

N (c| c̄q, Pq) ≈
T∏

t=1

N (ct| c̄(t)
q , p(t)

q ), (14)

where c̄(t)
q is a vector with its dimension of M that corre-

sponds to the t-th time frame. From the above equation, we
can define frame-dependent distribution P (t)

frame(ct),

P (t)
frame(ct) = N (ct| c̄(t)

q ,p(t)
q ). (15)

4. N-best Rescoring Based on TSR Model

4.1. Procedure of N-best Rescoring

N-best rescoring based on speech structure is proposed in
[5]. We carried out an experiment of N-best rescoring based
on TSR models. The task is isolated word recognition. Let
Phmm(x|wi) denote output probability of x given word wi’s
HMM, and Ptsr(c|wi) denote that of c given word wi’s TSR
model. The rescored output probability Pres(x| wi) is given
by:

Pres(x|wi) = Phmm(x|wi)Ptsr(c|wi)wtsr (16)

where wtsr is the weight of TSR model. The procedure to
calculate TSR likelihood Ptsr(c|wi) is shown in Fig. 3. To
calculate Ptsr(c|wi), a classical HMM trained for the input
utterance is needed. For that, we first trained a speaker-
independent HMM for each word, which is used as initial
model. The parameters of this initial HMM are updated only
by the input utterance and the resulting HMM is used to de-
rive the TSR model. If we do not use speaker-independent
word HMMs as initial and background models, the result-
ing HMM of an utterance and that of another utterance will
show different alignment patterns between states and feature
vectors even when the two utterances are of the same word.
Because the feature vector in speech structures is composed
of distances between HMM states, it is essential to satisfy a
condition that state i in an HMM and state i in another HMM
keep the same linguistic function when these two HMMs cor-
respond to the same word. Using an utterance-specific but
temporally aligned HMMs, we obtain a TSR vector sequence.

How to model statistically the TSR vector sequences? We
can use some commonly-used sequential models like HMM,
where plural alignment paths are allowed between a fea-
ture sequence and the state sequence of the HMM. In our
case, however, because alignment between the TSR vector se-
quences and the retrained HMM is already determined, TSR
vectors of a state of the HMM are modeled as Gaussian dis-
tribution. Finally the likelihood Ptsr(c| wi) is given as

Ptsr(c| wi) =
T∏

t=1

N (dt| µ
(q∗

t )
wi ,Σ(q∗

t )
wi ), (17)

where dt is the t-th TSR vector, µ(n)
wi and Σ(n)

wi are the mean
vector and covariance matrix for the n-th state in wi, and q∗t
is the state index to which the t-th frame belongs. We adopt
the Viterbi path q∗ instead of considering all the paths. It is
possible to consider all the paths but it is very costly.

4.2. Experimental Conditions

We used Tohoku University and Panasonic isolated spo-
ken word database [6], which contains 212 kinds of japanese
words spoken by 60 speakers. The word length varies from 3
morae to 7 morae. We used the utterances by 30 speakers as a
training data set and ones by the other 30 speakers as an eval-
uation data set. In the training, the parameters of TSR model
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Figure 3: Procedure to calculate TSR likelihood for each candidate

Table 1: Conditions
Sampling 16bit/16kHz
Window 25ms Blackman Window & 1ms Shift
Feature mel-cepstrum 18 dim., its ∆ and ∆2

Delta Window Length 20 frames
Word HMM 8-mixture with diagonal matrix

25 states and 23 distributions

Table 2: Rescoring by TSR decreases the word error rate
Scoring method Word error rate
HMM 1.37%
HMM + TSR 1.05%
HMM + TSR + ∆ TSR + ∆2 TSR 0.98%
N-best Oracle 0.04 %

µ(n)
wi and Σ(n)

wi are estimated to maximize Eq.17. We set TSR
weight wtsr in Eq.16 as 1.0 × 10−11 by preliminary experi-
ments. For rescoring, 10-best words are used as candidates.
Other conditions are shown in Table 1.

4.3. Results

We compared three methods, HMM only, HMM rescored
by TSR, and HMM rescored by TSR with its ∆ and ∆2. The
results are shown in Table.2. As shown in the table, rescoring
by TSR decrease the word error rate by 23.3% relative and
rescoring by TSR with its ∆ and ∆2 decrease the word er-
ror rate by 28.5% relative. The results show that TSR works
effectively in the isolated word recognition.

5. Conclusions

Due to coarse quantization in time, fine and dynamic fea-
tures are not well modeled in the conventional implemen-
tation of speech structures. In this paper, we reformulated

speech structure using trajectory HMMs and we success-
fully derived temporally-fine speech structure. Using the
new speech structure, we introduced dynamic features of the
speech structure. We carried out an experiment of N-best
rescoring of isolated word recognition and obtained 28.5%
decrease relative in word error rate.
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